
NASA/CP--2002-210000

Tenth Goddard Conference on Mass Storage Systems

and Technologies

in cooperation with the

Nineteenth IEEE Symposium on Mass Storage Systems

Edited by

Benjamin Kobler, Goddard Space Flight Center, Greenbelt, Maryland

P C Hariharan, Systems Engineering and Security, Inc., Greenbelt, Maryland

Proceedings of a conference held at

The Inn and Conference Center

University of Maryland, University College

College Park, Maryland, USA

April 15-18, 2002

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

April 2002

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to

the NASA STI Database, the largest collection of

aeronautical and space science STI in the world.

The Program Office is also NASA's institutional

mechanism for disseminating the results of its

research and development activities. These

results are published by NASA in the NASA STI

Report Series, which includes the following

report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of

NASA programs and include extensive data or

theoretical analysis. Includes compilations of
significant scientific and technical data and

information deemed to be of continuing
reference value. NASA's counterpart of

peer-reviewed formal professional papers but
has less stringent limitations on manuscript

length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by NASA.

SPECIAL PUBLICATION. Scientific, techni-

cal, or historical information from NASA

programs, projects, and mission, often con-

cerned with subjects having substantial public
interest.

TECHNICAL TRANSLATION.

English-language translations of foreign scien-

tific and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office's diverse offerings include creat-

ing custom thesauri, building customized data-

bases, organizing and publishing research results...

even providing videos.

For more information about the NASA STI Pro-

gram Office, see the following:

• Access the NASA STI Program Home Page at
http://www.sti.nasa.gov/STI-homepage.html

• E-mail your question via the Internet to

help @sti.nasa.gov

• Fax your question to the NASA Access Help
Desk at (301) 621-0134

° Telephone the NASA Access Help Desk at

(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/CP--2002-210000

Tenth Goddard Conference on Mass Storage Systems

and Technologies

in cooperation with the

Nineteenth IEEE Symposium on Mass Storage Systems

Edited by

Benjamin Kobler, Goddard Space Flight Center, Greenbelt, Maryland

P C Hariharan, Systems Engineering and Security, Inc., Greenbelt, Maryland

Proceedings of a conference held at

The Inn and Conference Center

University of Maryland, Universi_ College

College Park, Maryland, USA

April 15-18, 2002

National Aeronautics and

Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

April 2002

-NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

Price Code: Al7

Available from:

National Technical Information Service

5285 Port Royal Road
Springfield, VA 22161

Price Code: A10

Preface

This volume collects together 27 papers from the Tenth Goddard Conference on Mass Storage

Systems and Technologies being held in cooperation with the Nineteenth IEEE Symposium on Mass

Storage Systems and Technologies.

The Conference opens on the first day with tutorials on perpendicular recording in magnetic media,

IP storage, object-based storage, and storage virtualization. Over the following three days, there are

twelve sessions on various themes: Networked Storage, Hierarchical Storage Management, and

Storage Indexing. Instead of a poster session, the Program Committee decided this year to have a set

of shorter papers in the plenary sessions. Time has been set aside for extemporaneous presentations

to provide an opportunity for those with a message who either did not write up a paper, or decided,

after looking at the program, that they had worthwhile ideas to share.

An invited panel on the third day will cast a look at the future of storage, and reflect also on the past.

Intense competition in the disk drive industry has led to mergers and a reduction in the number of

manufacturers. The industry, however, has managed to maintain a rate of doubling the areal density

every year at least over the last two years. Nanomagnetism and perpendicular recording are two

ways to push back the superparamagnetic limit. The tape industry has not achieved the same areal

density as their brethren in the disk industry, but a cartridge holding a terabyte of data is now more

than just a possibility.

Networked storage (NAS, SAN) is now more prevalent in data centers, and WAN based IP storage

has been demonstrated. An interoperability demonstration among different products from various

vendors is planned as part of the vendor expo.

Vendor exhibits will conlinue through the three days of the general sessions.

The Program Committee has worked diligently with the authors of the papers to assist the editors in

the production of this volume and we thank them for their efforts.

Ben Kobler

P C Hariharan

iii

Tenth Goddard Conference on Mass Storage Systems and Technologies

in cooperation with the

Nineteenth IEEE Symposium on Mass Storage Systems

Program Committee

Ben Kobler, NASA Goddard Space Flight Center (Program Committee Chair)

Jean-Jacques Bedet, SSAI

John Berbert, NASA Goddard Space Flight Center

Randal Bums, The Johns Hopkins University

Robert Chadduck, National Archives and Records Administration

Jack Cole, Army Research Laboratory

Bob Coyne, IBM

Jim Finlayson, Department of Defense

Gene Harano, National Center for Atmospheric Research

P C Hariharan, Systems Engineering and Security, Inc.

Jim Hughes, Storage Technology Corporation

John Jensen, National Oceanic and Atmospheric Administration

Merritt Jones, MITRE

Ethan Miller, University of California, Santa Cruz

Reagan Moore, San Diego Supercomputer Center

Matthew O' Keefe, Sistina Software

Bruce Rosen, National Institute of Standards and Technology

Tom Ruwart, Ciprico

Don Sawyer, NASA Goddard Space Flight Center

Rodney Van Meter, Nokia

Richard Watson, Lawrence Livermore National Laboratory

iv

Table of Contents

Tutorials

Perpendicular Recording: A Future Technology or a Temporary Solution, Dmitri Litvinov

and Sakhrat Khizroev, Seagate Research ... 1

OSD: A Tutorial on Object Storage Devices, Thomas M Ruwart, Ciprico, Inc 21

Network Storage 1

IP Storage: The Challenge Ahead, Prasenjit Sarkar and Kaladhar Voruganti, IBM
Almaden Research Center ... 35

File Virtualization with DirectNFS, Anupam Bhide, Anu Engineer, Anshuman Kanetkar,

Aditya Kini, Calsoft Private Ltd, and Christos Karamanolis, Dan Muntz, Zheng Zhang,

HP Research Labs, and Gary Thunquest, HP Colorado .. 43

Building a Single Distributed File System from Many NFS Servers -or- The Poor Man's

Cluster Server, Dan Muntz, Hewlett Packard Labs ... 59

HSM 1

High Performance RAIT, James Hughes, Charles Milligan and Jacques Debiez,

Storage Technology Corporation .. 65

Conceptual Study of Intelligent Data Archives of the Future, H K Ramapriyan, Steve Kempler,

Chris Lynnes, Gail McConaughy, Ken McDonald, Richard Kiang, NASA Goddard Space

Flight Center and Sherri Calvo, Robert Harberts and Larry Roelofs, Global Science

and Technology, Inc, and Donglian Sun, George Mason University ... 75

Storage Issues at NCSA: How to get file systems going wide and fast within and out of

large scale Linux cluster systems, Michelle Butler, National Center for Supercomputing

Applications (NCSA) .. 93

Potpourri

The Challenges of Magnetic Recording on Tape for Data Storage (The One Terabyte

Cartridge and Beyond), Richard H Dee, Storage Technology Corporation 109

Efficient RAID Disk Scheduling on Smart Disks, Tai-Sheng Chang and David H C Du,

University of Minnesota .. 121

Experimentally Evaluating In-Place Delta Reconstruction, Randal Burns, The Johns Hopkins

University, Larry Stockmeyer, IBM Almaden Research Center and Darrell D E Long,

University of California, Santa Cruz ... 137

Storage Indexing

Intra-File Security for a Distributed File System, Scott A Banachowski, Zachary N J Peterson,

Ethan L Miller and Scott A Brandt, University of California, Santa Cruz 153

Efficient Storage and Management of Environmental Information, Nabil R Adam,

Vijayalakshmi Atluri and Songmei Yu, Rutgers University and Yelena Yesha, University

of Maryland Baltimore County .. 165

Indexing and selection of data items in huge data sets by constructing and accessing tag

collections, Sebastien Ponce and Pere Mato Vila, CERN and Roger D Hersch, Ecole

Polytechnique Lausanne .. 181

HSM 2

Data Placement for Tertiary Storage, Jiangtao Li and Sunil Prabhakar, Purdue University 193

Storage Resource Managers: Middleware Components for Grid Storage, Arie Shoshani,

Alex Sim, Junmin Gu, Lawrence Berkeley National Laboratory .. 209

Storage Area Networks and the High Performance Storage System, Harry Hulen and Otis Graf,

IBM Global Services, and Keith Fitzgerald and Richard W Watson, Lawrence Livermore

National Laboratory ... 225

Network Storage 2

Introducing a Flexible Data Transport Protocol for Network Storage Applications,

Patrick Beng T Khoo and Wilson Yong H Wang, Data Storage Institute, National

University of Singapore ... 241

Point-in-Time Copy: Yesterday, Today and Tomorrow, Alain Azagury, Michael E Factor

and Julian Satran, IBM Research Lab in Haifa, and William Micka, IBM Storage

Systems Group ... 259

Locating Logical Volumes in Large-Scale Networks, Mallik Mahalingam,

Christos Karamanolis, Magnus Karlsson and Zhichen Xu, Hewlett Packard Labs 271

Short Papers

Building a Massive, Distributed Storage Infrastructure at Indiana University, Anurag Shankar

and Gerry Bernbom, Indiana University ... 285

High-density holographic data storage with random encoded reference beam,

Vladimir B Markov, MetroLaser, Inc .. 291

iSCSI Initiator Design and Implementation Experience, Kalman Z Meth, IBM Haifa

Research Lab ... 297

vi

Efficiently SchedulingTape-residentJobs, Jing Shi, Chungxiao Xing and Lizhu Zhou,

Tsinghua University ... 305

The Storage Stability of Metal Particle Media: Chemical Analysis and Kinetics of Lubricant

and Binder Hydrolysis, Kazuko Hanai and Yutaka Kakuishi, Fuji Photo Film Co Ltd 311

Java and Real Time Storage Applications, Gary Mueller and Janet Borzuchowski,

Storage Technology Corporation ... 317

Vendor Paper

DIR-2000, 1 Gbit/sec Data Recorder for VERA Project, Tony Sasanuma, Sony Broadband

Solutions Network Company ... 327

Index of Authors ... 331

vii

Perpendicular Recording: A Future Technology or a Temporary

Solution

Dmitri Litvinov and Sakhrat Khizroev

Seagate Research

River Park Commons, Suite 550

2403 Sidney Street

Pittsburgh, PA 15203-2116
Tel: + 1-412-918-7028

Fax: +1-412-918-7010

Abstract

During the vitally critical times to the future advances in data storage technologies,

perpendicular magnetic recording [1,2,3] has attracted a substantial amount of attention

as a prime alternative to the technologies in place today [4,5]. As envisioned by the

industry and academia leaders, perpendicular recording is the most likely candidate for

the technology implemented in the next generations of hard drives. The most competitive

virtue of this technology is the fact that while being technically the closest alternative to

conventional longitudinal recording, it is capable of extending the (superparamagnetic)

density limit [6] beyond what is achievable with longitudinal recording. It is widely

believed that perpendicular magnetic recording paradigm will enable to sustain the

current great strides in technological advances for the next several generations of

magnetic storage solutions.

This paper will cover the basic principles underlying perpendicular recording as well as

the challenges associated with implementing the technology [7,8,9,10].

1 Superparamagnetic limit and the need for a new technology

Magnetizing
Coil

Inductive

"Ring" Writer

MR Reader

/

/
Write field Recording Media

Figure 1. A schematic of a conventional longitudinal recording scheme employed in

today's hard drives.

The data on a magnetic recording medium is stored by means of recording a certain

spatial variations of the magnetization, where the magnetization variations represent the

data. The relation between the data and the magnetization pattern is defined by the

encoding scheme used. Figure 1 shows a simplified schematic of a conventional

longitudinal recording system. The recording media are engineered such that the

preferreddirection of the magnetization,a so-calledeasyaxis, lies in the plane of the

recording layer. Using an inductive "ring"-type writer, the magnetization of the grains is

aligned along the track in either positive or negative direction. The data is read back

using a magnetoresistive element. A change or no change in the magnetization direction

at the bit transitions corresponds to a 1 or to a 0, respectively. The lateral dimensions of a

bit, i.e. the smallest feature realized in a particular drive design, defines the areal bit

density that such a drive supports.

A conventional magnetic medium has granular structure such that each bit consists of

several magnetic grains or magnetic clusters. The magnetic clusters/grains are usually

shaped irregularly and are randomly packed, as shown in Figure 2a. Consequently, the

recording bits and bit transitions are usually not perfect, which is illustrated in Figure 2b.

These imperfections lead to noise in the playback signal. The noise is kept below a

certain acceptable level by means of including a sufficiently large number of magnetic

grains into each bit. The resulting averaging reduces the level of noise. As the areal

density increases, the bit size and the size of the grains that constitute the bit, decreases.

Typical grains in today's media range from 5 to 15nm.

Magnetic

grains

Bit transition

(a) (b)

Figure 2. (a) A transmission electron micrograph of a typical granular medium; (b) a

schematic of a single bit transition in a granular medium.

One of the critical factors characterizing the reliability of a data storage device is data

stability. Various parameters control the stability of the data against the external factors.

With respect to the external temperature, which is manifested by thermal fluctuations in

the recording media, the magnetic anisotropy energy stored in each magnetic grain is one

of the major determinants (assuming that the grains are magnetically independent). The

magnetic anisotropy energy approximately defines the amount of energy necessary to

reverse the direction of the magnetization of a grain. For a single grain, it is equal to

KuV, where Ku is the magnetic anisotropy energy per unit volume and V is the volume

of the grain. For a medium to be thermally stable, the above quantity KuV should be

substantially greater (30-40 times) than the energy of a single quantum of thermal

fluctuation, kBT, where kB is Boltzman's constant and T is the temperature [6]. As

mentioned above, the higher areal densities require smaller grain sizes. It follows that to

sustain thermal stability, Ku of a magnetic medium material should increase with the

grain size decreases. Unfortunately, as Ku increases, so does the write field necessary to

efficiently write onto the medium. In conventional longitudinal recording, the upper limit

of the write field that a recording head can generate is equal to 2_Ms where Ms is the

saturation magnetization moment of tile head material. The highest value of 4rtMs of the

materials available today is rapidly approaching what is believed to be a fundamental

limit of-25kGauss. This defines the upper limit of the Ku values that can be employed in

a longitudinal medium and, consequently, the maximum areal density achievable with

conventional longitudinal recording. It has been predicted that with the materials

available today, the highest areal density achievable with conventional longitudinal
recording is - 100Gbit/in [5,6].

2 Dodging the superparamagnetic limit ... The advantages of perpendicular

recording?

Several aspects native to perpendicular recording make it superior to longitudinal

recording with respect to the superparamagnetic limit. Among the advantages are higher

write-field amplitude and sharper write-field gradients, thicker recording layers, absence

of demagnetizing field at bit transitions, higher playback amplitude, etc. The specific

nature of these advantages is discussed in detail below.

2.1 Higher write field with sharper side and trailing gradients

Figure 3 shows a comparative schematic of conventional longitudinal and perpendicular

recording schemes. While in longitudinal recording, the natural direction of the

magnetization, the easy axis, lies in the plane of a recording rnedium, in perpendicular

recording, the easy axis is perpendicular to the plane of a medium. In longitudinal

recording, the recording is performed by the fringing fields emanating from the gap

region between the write-poles of a conventional "ring"-type recording head. It is the

geometry of a longitudinal ring-head that defines thc upper limit of the write field of

2riMs, where Ms is the saturation magnetization of the write-pole material. In

perpendicular recording, write field is generated between the trailing pole of a single pole

head and a soft underlayer (SUL), a soft magnetic material located below the recording

layer. In such geometry, the upper limit of the write field is equal to 4riMs, which is two

times higher than the highest field achievable with a longitudinal ring head.

Yoke

i

°°.°°

I

i l

Written -"

moment

in media

Record: ,

layer Transition :_"... .." : i
, ,,0===-

TransitionSUL

Coil
Yoke

Trailing edge

/

41miiwmiu_u ileiu o

,.c,!.
i

i -.......-
$_ '(lap" field Fringing _ _ Recording

* i it fields- _-_J)

---II.":" llX
Written moment

in media

(a) (b)

Figure 3. Diagram showing a side cross-section of (a) a typical perpendicular system

including a SPH and a double-layer medium with a SUL and (b) a longitudinal system,

including a ring-head and a single-layer recording medium.

Higher write efficiency of a perpendicular single-pole recording head in combination

with a SUL can ba explained in greater detail as illustrated in Figure 4. It can be shown

(the proof of this concept is beyond the scope of this paper [9]) that to evaluate the

magnetic fields above the SUL boundary, the SUL can be thought of as a perfect

magnetic mirror such that the magnetic field above the SUL boudnary is a superposition

of the fields generated by both the magnetic elements above the SUL boundary and by

their images located below the SUL boundary. This concept is illustrated in Figure 4,

where the SUL is replaced with an image recording head. From this picture it is clear that

in perpendicular recording the write process effectively occurs in the gap between the

magnetic poles, the real and the image poles, which is in contrast to longitudinal

recording where the writing is done by the frinding fields as outlined above. From simple

superposition arguments, it is straighforward to show that the in-gap field is equal to

4riMs while the highest value of the fringing field is equal to 2riMs.

Real head

-] . Coil

I __"Gap" fields

........ Nr <&[
boundary

| |

--S -

Image head

Figure 4 A schematic of the magnetic imaging principle in perpendicular recording using

a medium with a soft underlayer.

As shown above, the maximum write field available in perpendicular recording is two

times higher than the maximum write available in longitudinal recording. The direct

consequence is the ability to write onto a higher anisotropy media (higher Ku). The use of

higher anisotropy media materials allows higher areal densities without compromising

the thermal stability of the recording data.

The spatial profile of the write field is also more beneficial for achieving higher areal

density in perpendicular recording. The side gradients, i.e. the rate at which the field rolls

off at the side edges of a recording head, are usually substantially sharper than what one

observes in longitudinal recording. This property leads to better-defined tracks with a

very narrow erase band. Along with better magnetic alignment of the media (see below),

extremely narrow tracks are possible to achieve.

4

H_(Oe)
6734

3373

H x(Oe)

[9397 _

9698

0.5 um

Along the track

(a) (b)

Figure 5. Longitudinal head field contours and perpendicular head field contours from (a)

a longitudinal head with a 150 nm gap and (b) a perpendicular pole head with a pole
thickness of 700 nm. The trackwidth is 50 nm in both cases.

The single pole perpendicular write beads used to acquire the experimental data presented

in this paper, were made by focused ion-beam (FIB) modification of conventional

longitudinal writers [l 1]. It should be emphasized that the main difference in the design

of conventional perpendicular and longitudinal writers is the length of the gap between

the magnetic write-poles. In terms of the write process, while in longitudinal recording

the writing is done near the gap region, in perpendicular recording, the writing is done by

the trailing edge of the trailing pole [12]. Figure 6 shows a state-of-the-art perpendicular

recording head manufactured by FIB trimming of a conventional longitudinal write head

by increasing the gap length and trimming the trailing pole and the reader to the specified

dimensions. Both the trailing pole and the reader are designed for a 60nm track width.

FIBedWriter

FIBedReader

Figure 6. A single pole perpendicular write head made by focused ion-beam etching of a

conventional longitudinal ring head. The trailing pole width is 60nm.

2.2 Well aligned media

In conventional longitudinal recording, the easy axes of individual grains are randomly

oriented in the plane of a medium. (It should be recalled that the easy axis is the

energetically favorable axis/direction along which the magnetization of a grain is aligned

in the absence of external magnetic fields.) Thus, in longitudinal recording, a large

fraction of the grains forming a bit has their easy axes severely misaligned with the bit

magnetization direction. Writing well-defined bit transitions on such randomly oriented

media imposes stringent requirements onto the spatial profile of a write-field. If one

neglects the imperfections of a bit transition due to the granular nature of a medium, the

quality of the bit transition is defined mainly by the write-field profile.

This is drastically different from perpendicular recording, in which the easy axis of each

magnetic grain is relatively well aligned in the direction perpendicular to the plain of the

medium. Thus, in a perpendicular recording, the magnetization direction of a recorded bit

always coincides with the orientation of the easy axes of individual grains that form the

bit. Well-defined easy axis orientation relaxes the stringent requirements for the trailing

and side write-field gradients necessary to achieve sharp transitions, thus enabling the use
of thicker media [10].

The intrinsically better alignment of perpendicular media helps record narrow tracks with

well-defined transitions even into a relatively thick recording layer. A MFM image of

two adjacent tracks with a 65 nm trackpitch written into a 50 nm thick CoCr recording

layer using a 60 nm wide single pole head is shown in Figure 7 [7]. This is equivalent to a

track density of-400ktpi. It should be stressed that the state-of-the-art in longitudinal

recording for the track density is -100ktpi.

The possibility of using thicker recording layers further assists with improving thermal
stability.

-400 ktpi

130 nrn

Figure 7. A MFM image of two tracks with a 65 nm trackpitch.

With respect to using well-aligned media, it should be remembered that previously it was

shown that, although well-aligned perpendicular media might have a relatively small

average angle between the magnetization and the perpendicular recording field, the

torque created is still sufficiently large to quickly switch the magnetization [13, 14].

2.3 Absence of demagnetizing fields at bit transitions

One of the major destabilizing factors in longitudinal recording medium is strong

demagnetizing field at the bit transition. The destabilizing influence of the demagnetizing

field at the bit transitions is easy to see if one notices that the two adjacent bits of

opposing magnetization directions repel in a similar way as two bar magnets with the

poles of the same polarity, such as north-north or south-south, facing each other. The

magnets would try to flip such that the poles of opposite polarities are next to each other.

This is illustrated below in Figure 8.

6

longitudinal

N..S1

More stable magnet

configuration

perpendicular

N S

Ill
S N

Figure 8. A schematic of the influence of demagnetizing fields in longitudinal and

perpendicular media.

The calculated demagnetizing fields for the cases of longitudinal and perpendicular

media for a single bit-transition are shown in Figure 9. In the longitudinal recording, high

demagnetizing fields at bit-transitions destabilize individual grains leading to a finite

transition width. This is opposite to perpendicular recording, in which the demagnetizing

fields reach their minima at the bit-transitions, thus promoting ultra-narrow transitions

and, consequently, high-density recording.

It can also be noticed that, unlike in longitudinal recording, the demagnetization fields in

perpendicular recording decrease as the thickness increases, thus promoting thicker

recording layers, which in turn is beneficial for the thermal stability. In this respect, it is

common to notice that although perpendicular recording promotes high densities, the

stronger influence of the demagnetization fields at lower densities is a disadvantage of

perpendicular recording.

2000- _-Y=lOnm 2000-
. - T = 20 nm _

---,_-- T = lOnm
1000- 1000- _ T = 20 nm

"$" " "$" " I
o o- o 0- ,

" " / "r_ ' [S=-1000- ./ -1000- 1

-2000- -- -2000-

-0.'04 -0.'02 0.00 ' 0.()2 ' 0.64 -0.'04 " -0.'02 " 0.00 ' 0.62 ' 0.04

Distance down the track (um) Distance along the track (um)

(a) (b)

Figure 9. The demagnetization field versus the distance down the track along the central

planes of 10 nm and 20 nm thick recording layers for (a) perpendicular and (b)

longitudinal recording media.

3 A new system component: soft underlayer challenges and design considerations

One of the key aspects of perpendicular recording that makes it superior to the

longitudinal recording with respect to superparamagnetic effects is utilization of media

with a SUL. A single-pole head and a medium with a SUL perpendicular recording

system enables write fields in excess of 80% of 4riMs of the pole head/SUL material.

This doubles the fields available in longitudinal recording, thus opening the possibility to

write on substantially higher anisotropy media and leading to better thermal stability.

Acting as a magnetic mirror, SUL effectively doubles the recording layer thickness,

facilitating substantially stronger readout signals. Also, the effective thickness increase

due to the mirroring effects by a SUL leads to the reduction of the demagnetizing fields

with a potential to further improve thermal stability.

While the utilization of perpendicular media with a SUL should make it possible to

postpone the superparamagnetic limit, the SUL introduces a number of technical

challenges. Some of the issues related to the presence of the SUL are discussed below.

3.1 SUL as a major source of noise

Among the technical challenges introduced by the presence of a SUL is the fact that a not

properly optimized SUL material can introduce a significant amount of noise into the

playback signal. The noise results from the stray field generated by the effective charges

resulting from domain walls in the SUL as illustrated in Figure 10.

Fields from Wall (Sourceof Noise)

Domainwall

(sourceof "magneticcharges")

Figure 10. A schematic of the stray fields generated by a SUL

Magnetic biasing of the SUL, i.e. forcing the SUL into a single magnetic domain state,

allows to minimize the SUL noise. The biasing can be achieved either by application of

an external magnetic field or by engineering a SUL material with a built-in biasing field.

Figure 11 shows a schematic of the experimental setup to study the effect of magnetic

biasing of the SUL on the noise. The magnetic biasing was achieved using two NdFeB

permanent magnets placed in the vicinity of the media. The placement of the magnets

was such that it allowed achieving complete saturation of the SUL underneath the reader.

Special care was necessary to arrange the magnets sufficiently far from the recording

head -2cm away in order not to affect the properties of the read element.

Magnets

Figure 11. A schematic of experimental setup to magnetically bias SUL film.

Figure 12showstheplaybacksignalsfrom thetwo mediawith asdepositednon-biased
(a)and magneticallybiased(b) SUL's. A substantiallevelof noiseattributedto presence
of a largenumberof domainwalls (confirmedby magneticforcemicroscopy)in theSUL
canbeseenin Figure 12a. A drasticreductionof the noise(by at least10dB)is clearly
observedin Figure 12bwheretheSUL is magneticallybiased.

153 ",50

103

,£yJ

_.,£ (1
0

c) -50

-luJ

"I 50

v

._ O

.Q -SU

__-'00

500-15:)_:X') " "r_30 15C_1 2000 " 1000 ' 1500 20C0

Time (ns) Time (ns)

(a) (b)

Figure 12. Playback signal from two media with different SUL's. (a) SUL with a large

number of stripe domains. The presence of stripe domains was confirmed using magnetic

force microscopy. (b) Biased SUL with domain walls swept out from the SUL material.

The magnetic biasing saturates SUL film forcing it into a pseudo-single domain state

effectively sweeping the domain walls out of the SUL material. This results in
elimination of the SUL noise.

3.2 SUL magnetic moment

To properly design a perpendicular recording system that utilizes a medium with a SUL,

it is critical to choose an appropriate SUL material. As illustrated in Figure 13, if the

magnetic moment of a SUL material is lower than the magnetic moment of the recording

pole tip, saturation of the SUL underneath the pole tip can occur.

SOL 4_Ms< Head 4;tM s SUL 4_Ms > Head 4_Ms
(saturatedregionunderthe poletip (not saturatedunderthe poletip)

deteriorates radients)

H H

rated

region

Figure 13. A schematic illustrating the saturation effect in the SUL is the magnetic
moment of a SUL is lower than the magnetic moment of the write pole tip.

Theresultsof boundaryelementmodelingfor two differenthead/SULcombinationsare
presentedin Figure 14. It canbe noticedthat it is possibleto generatestrongrecording
fields with themagnitudeapproaching4riMs of thepole tip evenif the SULhasa lower
magneticmoment than the pole tip. However, saturationof the SUL will lead to a
substantialdeteriorationof thetrailing field gradients.Thetrailing gradientsin thecaseof
the PermalloybasedSUL aresubstantiallyworsethan the trailing gradientsin the case
whena FeAINbasedSUL isused.

Permalloy _::_D_;;_;;;;;_
15 I_t=100mA _:_

•--C--- FeAIN ._
Is t=75mA /_

O 10 _/

5 f6 /Z o

O , , i L i , , , k , ,

-0.5 -0.4 -0.3

Distance down the track (llm)

Figure 14. Trailing fields from a single pole perpendicular write head made out of FeA1N

(4riMs =20kG) for FeAIN and Permalloy (4_Ms = 10kG) SUL's.

It follows that if high moment materials are used for write heads, e.g. CoFeB, FeAIN,

etc., the moment of the SUL material should match or exceed the moment of the pole tip
material.

3.3 SUL thickness

Another important issue related to the optimized design of a SUL is the SUL thickness.

Using simple considerations of magnetic flux conservation, the minimum thickness

required for the SUL to function properly is given by

1 Ms pole tip
/soft underlayer _ -- Wpole tip,

2 M ssoftunderlayer

where the Wpole tip is the width of the write pole tip, i.e. the dimension of the write pole tip

defining the track width. The evaluation of the above equation for the case of 100Gbit/in 2

areal density and 4:1 bit aspect ratio, i.e. a 160nm wide pole tip, and the same pole tip

and SUL materials, gives the lower boundary on the SUL thickness of 80nm. It should be

stressed that this thickness is substantially smaller than the minimum required thickness

often quoted in the literature of hundreds of nanometers to several microns.

This important observation needs to be strongly emphasized. Due to materials properties,

the mentioned above problem of SUL noise becomes increasingly aggravated with the

increasing thickness of the SUL.

10

3.4 SUL influence on the resolution of a perpendicular recording system

An additional challenge that the presence of a SUL imposes is potential deterioration of

the system resolution. During reading from a medium with a SUL, due to the magnetic

imaging properties of the SUL, the resolution can get distorted if the separation between

the ABS and the SUL (sum of the recording layer thickness and the flying height) is

comparable to the reader thickness.

This phenomenon is clearly illustrated in the calculated [15] PW50 and the playback

signal versus the underlayer to the ABS distance, shown in Figure 15. PW50 is the

physical width of a single transition, the measure of the spatial resolution of a recording

system. In these calculations, a fixed recording layer thickness of 10 nm was assumed,

and spacing between the bottom side of the recording layer and the underlayer was varied

from zero to some finite values. For comparison, the dotted straight lines indicate the

values for the case when there is no underlayer. It can be clearly seen that the resolution

of the modeled recording system substantially deteriorates at certain values of the ABS-

to-SUL spacing. This suggests that a special care has to be taken to properly optimize the

5O

10

E 45
¢-

0
1,0

a. 40

system's resolution.

PW50 (with SUL)

--..¢3.-- PW50 (without SUI_)

[] _E3 f:::L - c- - Signal (with SUL)

_. _ - _2" - Signal (without SUL)

_17

' l's' 2'o ' 2; ' A
ABS to underlayer distance (nm)

1.0 _-

0.9 _

0.8 =
._m
O3

0.7
.N_

0.6 E
0

z

Figure 15. PW50 and the normalized playback vs. the ABS to underlayer spacing. 30 nm

GMR element and a 70 nm shield-to-shield spacing are assumed.

Although, in a properly designed system this resolution distortion can be almost

completely eliminated, it causes the resolution of a typical read head in a system with an

underlayer to be at most as good as the resolution of an equivalent head in a system

without an underlayer. It should be noted, however, the underlayer definitely increases

the playback signal, which is desirable at high areal densities.

4 Playback: new signal processing schemes

One of the drastic differences between perpendicular and longitudinal recording is the

difference in playback signals. To help understand the basic difference in the playback

process between longitudinal and perpendicular recording, schematic diagrams of the

stray fields emanating from a longitudinal medium and perpendicular media without and

with a SUL are shown in Figure 16, respectively. As can be noticed, in the longitudinal

case, the "stray fields emanate only from the transitions, with the fields near the transitions

oriented perpendicular to the disk plane. On the contrary, in the perpendicular cases, the

stray field emanates from the effective magnetic "charges" at the top and effective (due to

11

a SUL)bottomsurfacesof therecordinglayer,with thefield nearthe transitions oriented

parallel to the disk plane.

Hstray

 a'I m.. .----M]

(b)

Figure 16. Diagrams showing the sources of stray fields in the case of (a) longitudinal

recording, and (b) perpendicular recording.

As a result of the different magnetic "charge" distributions, the playback waveform differ

drastically between longitudinal and perpendicular recording schemes. It is illustrated in

Figure 17 where typical low-density playback waveforms are shown for both

perpendicular and longitudinal recording.

Perpendicular Longitudinal

Playback Playback

O'J

_5

Time

b5

E.

Time

Figure 17. Typical playback waveforms for perpendicular and longitudinal recording
schemes.

The shown above waveforms for perpendicular and longitudinal recording schemes

outline major difference between perpendicular and longitudinal recording. While in

longitudinal recording the signal is present only at bit transitions, in perpendicular

recording the signal is read not only from a bit transition but also from across the whole

bit area. It is possible to differentiate the perpendicular playback signal to make it similar

to the playback signal in longitudinal recording. However, it should be remembered that

differentiate perpendicular playback is only similar but not identical to longitudinal

playback. The difference arises in the absence of a transition when a longitudinal

playback signal is equal to zero while a differentiated perpendicular playback is, although

relatively small in amplitude, but is still finite.

12

It should be stressedthat while not entirely suited to be processedby conventional
longitudinal channels,perpendicularplayback clearly contain more information than
typical longitudinalwaveforms,in which the signalarrivesonly from transitions.This
propertycouldpotentiallybeusedto advantagein futurechanneldesigns.

5 New materials challenges

While the requirements for the head materials used in perpendicular recording are similar

to the head materials used in longitudinal recording, the major differences exist with

respect to media materials. A typical perpendicular medium consists of two magnetically

active layers: a hard layer and a SUL (See Figure 18). A hard layer in a perpendicular

medium has rather different magnetic properties from a hard layer utilized in

conventional longitudinal recording. It should also be noted that there is no analog to a

SUL in longitudinal recording. The requirements for these two layers are outlined below.

Ovorcoat

Hard Layer

I_uffer/SDacer layer

Soft Underlayer

Substrate

Figure 18. A schematics of a typical perpendicular medium.

5.1 Hard layer materials

The primary approach to the design of a perpendicular recording layer is in many ways

similar to the design of a conventional longitudinal recording layer. All the media in use

today has granular structure, i.e. made of polycrystalline materials. Major goals inherent

to both longitudinal and perpendicular recording layer development are small grain size,

small grain size distribution, texture control, optimization of the inter-granular exchange

de-coupling, etc.

A large variety of today's perpendicular magnetic recording layer types can be clearly

divided into the two major categories: 1) Alloy based media, such as CoCr-alloys[16, 17],

and 2) media based on magnetic multilayers, such as Co/Pt, Co/Pd or others[18, 19].

Figure 19 contrasts the major difference between alloy and multilayer media. In alloy

media, the magnetic anisotropy is controlled by magnetic crystalline anisotropy. The

alloy media are usually highly textured to insure well-defined magnetic easy axis [20]. In

magnetic multilayers, the magnetic anisotropy is controlled by interfacial effects between

a magnetic layer, such as Co, and a highly polarizable spacer layer, such as Palladium or

Platinum. In contrast to alloy media, this set of materials as used in perpendicular media

usually possesses a very weak texture.

13

Alloy

\/
Single crystalgrains,arrows
represent the easyaxes orientations

(a)

Bi-layer {

Multilayer

(b)

Co

Pd

Figure 19. A schematic representation of major microstructural differences

Material-wise, perpendicular CoCr-based alloy recording layers are similar to

conventional longitudinal CoCr-based media, with the major difference being the

orientation of the magnetic easy axis. Therefore, a significant amount of information

accumulated in the course of the longitudinal media development can be used to control

the critical parameters such as the grain size and the inter-granular exchange coupling. At

the same time, CoCr-based perpendicular media have some open issues. For example, it

is not clear yet if it is possible to make a CoCr-based medium with sufficiently high

anisotropy to avoid superparamagnetic instabilities at ultra-high areal densities. It also

has proven to be difficult to make CoCr-alloy based perpendicular recording layers with a

remanent squareness of 1. The remanent squareness is defined as a ratio between the

remanent magnetization, the value of magnetization on a M-H loop at H=0, and the

saturation magnetization, the maximum value of magnetization. It is believed that a

remanent squareness of 1 is necessary for low-density bit pattern stability. Also, a

remanent squareness of less than 1 can lead to substantial amounts of DC noise. Various

magnetic alloys such as L10 phases of FePt, CoPt, etc. are being studied as higher

anisotropy alternatives for the recording layer.

The magnetic multilayer based recording layers typically have significantly larger

anisotropy energies (Coercive fields of above 15 kOe have been reported.) and are thus

promising to be extendable to significantly higher recording densities. Another advantage

of the magnetic multilayers is the fact that typically these materials have a remanent

squareness of 1.

To compare basic magnetic properties of CoCr-alloy and mutlilayer based recording

layers, typical M-H loops by a Kerr magnetometer for a 50 nm thick perpendicular CoCr

thin-film and a 52 nm thick Co/Pd structure (a stack of 40 sets of adjacent 3 and 10

Angstrom thick layers of Co and Pd, respectively) are shown in Figure 20a and b,

respectively. It can be noticed that in addition to the remanent squareness of 1, the Co/Pd

structure exhibits nucleation fields in excess of 3kOe, a useful characteristic to avoid data

self-erasure due to stray fields. Meanwhile, the CoCr material shown in Figure 20a has a

squareness of 0.75. The CoCr and Co/Pd recording layers have coercive fields and

magnetizations of approximately 3 kOe and 9 kOe and 300 emu/cc and 200 emu/cc,

respectively.

14

_4

_2

._ 0
O9
_-2
09

-4

r • , " , " 1 " , • , " '

,"-"7-.
/

i

wD

i,

txi 5
v

_0

oe-5
,,¢,

f

J
-10 -5 0

. • • , .

./

i

J

J

• _ •1'0 •

Field (kOe) Field (kOe)

(a) (b)

Figure 20. An M-H loop ofa 50nm thick (a) CoCr-alloy layer and (b) Co/Pd multilayer.

The direct consequence of remanent squareness less than 1 is shown in Figure 21, which

compares the spectral SNR distributions for the two media types. The CoCr medium

exhibits a significant amount of noise at lower linear densities. This is mainly due to the

fact that the dominant contribution to the noise at low linear density in the CoCr-based

medium comes from the DC noise which results from the relatively low value of

remanent squareness, as described below in more detail.

25

20

_---lfi

10

5

---a,...., --, ,.... ,..../
\ t

50 100 150 200 250 300 350
Bit dens_y [kf'ci]

Figure 21. SNR versus the linear density for a CoCr-alloy (hollow circles) and a Co/Pd

multilayer (hollow squares).

5.2 High anisotropy SUL materials

Several design guidelines for SUL's were discussed above including thickness

requirement and magnetic moment requirement. An additional parameter, which is

critical to achieve optimized performance of a SUL in a perpendicular recording system,

is magnetic anisotropy of the SUL material. The dynamic properties [21, 22] and

influence of a SUL on system's resolution [23] are affected by the value of the anisotropy

field. The latter is illustrated in Figure 22, where the playback versus the linear density

(roll-off) curves are shown for identical perpendicular recording systems with different

SUL materials. The explanation of the quantum-mechanical nature of this effect is

beyond the scope of this paper. However, it should be mentioned that the deterioration of

the system's resolution arises from inability of lower anisotropy SUL materials to

perfectly respond to spatially-fast varying magnetization patterns in the recording layer.

15

E -10
nn -20
13

-30
O
0_ -40

.(3
>,
(_ -50

EL -60

FeAIN (Hk - 15 Oe)

Ni4sFess(Hk - 50 Oe)

_>'O ---O-- Permalloy (Hk ~ 50e)

O, z,_
, ,

200 400 600 800 1000
Linear Density (kfci)

Figure 22. Playback roll-off curves for perpendicular recording media with identical

recording layer but different SUL's. The extent of the roll-off curves to higher linear

densities for higher anisotropy SUL indicates the advantage of using high anisotropy
SUL materials.

6 How far perpendicular recording will take us and what will come next?

It should be emphasized that although perpendicular recording allows to surpass the

superparamagnetic limit of longitudinal recording, there exists a superparamagnetic limit

native to perpendicular recording as well. A number of factors such as the availability of

higher write fields, possibility of using thicker well-aligned media, and the absence of

demagnetizing fields at bit transitions aid in promoting thermally stable media to

substantially higher areal densities. However, it has been shown that with all factors

taken into account, the maximum areal density achievable with perpendicular recording

scheme in development today is 500-1000 Gbit/in 2 [5,24,25]. Once the perpendicular

magnetic recording reaches its superparamagnetic limit, a new wave of technological
innovations will have to take place.

As mentioned in the beginning of this text, the foremost fundamental reason for the

existence of the superparamagnetic limit is the head materials constraint imposing the

limitation on the available head field that limits the utilization of higher anisotropy

media. Among the potential successors of perpendicular recording is heat-assisted

magnetic recording (HAMR) [26], in which the anisotropy of a recording medium is
temporarily reduced during the write process. In HAMR schemes, an additional element

to be incorporated in the design of a recording system is a source of heat (envisioned as

an ultra-small light source) to locally increase the temperature of the recording medium.

The increase of the medium temperature leads to the decrease of the medium coercivity
enabling the writing with relatively small magnetic fields.

Additionally, patterned media can be utilized to further extend the limits of magnetic

recording [26]. In a patterned medium, the location and the size of the magnetic features

are pre-determined by the medium manufacturing process. Elimination of the element of

randomness characteristic to today's polycrystalline recording media is a clear advantage
of the patterned medium approach. However, for such a medium to become a serious

contender to replace conventional alloy or multilayer media, an economically viable

manufacturing process will have to be developed [27,28].

16

It shouldbe emphasizedthat dueto theadvantageousnatureof perpendicularrecording
in promotingextremelyhigh arealbit densities(high write field amplitude,well aligned
medium,sharpfield gradients,absenceof demagnetizingfield at transitions,etc.), the
future technologiessuch as mentionedabove HAMR and recording on a patterned
medium,are likely to be developedas extensionsof perpendicularmagneticrecording
schemes[26] ratherthanto bebasedon conventionallongitudinalrecording.

References

[lo]

[11]

[12]

[1] S. Iwasaki and Y. Nakamura, "An analysis for the magnetization mode for high

density magnetic recording," IEEE Trans. Magn., vol. 13, p. 1272, 1977.

[2] George J. Y. Fan, "Analysis of a practical perpendicular head for digital purposes,"

JAP, Vol. 31 (5), p. 402S, 1960.

[3] W. Cain, A. Payne, M. Baldwinson, R. Hempstead, "Challenges in the practical

implementation of perpendicular magnetic recording," IEEE Trans. Magn., Vol. 32

(1), p. 97, 1996.

[4] D.A. Thompson, "The role of perpendicular recording in the future of hard disk

storage," J. Magn. Soc. Of Japan 21, Supplement No. S2, p. 9, 1997.

[5] N.H. Bertram and M. Williams, "SNR and density limit estimates: a comparison of

longitudinal and perpendicular recording," 1EEE Trans. Magn., vol 36(1), p. 4,
1999.

[6] S.H. Charap, "Thermal Stability of Recorded Information at High Densities," IEEE

Trans. Magn., Vol. 33(1), p. 978, 1997.

[7] S. Khizroev, M.H. Kryder, and D. Litvino_, '"Next generation perpendicular

system," Vol. 37(4), p. 1922, 2001.

[8] D. Litvinov, M.H. Kryder, and S. Khizroev, "Recording physics of perpendicular

media: soft underlayers," J. Magn. Magn. Mater., 232 (1-2), 84-90, 2001.

[9] S. Khizroev and Y.-K. Liu and K. Mountfield and M. H. Kryder and D. Litvinov,

"Physics of Perpendicular Recording: Write Process," J. Magn. Magn. Mater., in

press, 2002.

D. Litvinov, M.H. Kryder, and S. Khizroev, "Recording physics of perpendicular

media: hard layers," J. Magn. Magn. Mater., in press, 2002.

S.K. Khizroev and M.H. Kryder and Y. |keda and K. Rubin and P. Arnett and M.

Best and D.A. Thompson, "Recording heads with trackwidths suitable for

100Gbit/in2, '' IEEE Trans. Magn., Vol. 35, p. 2544, 1999.

D. Litvinov, J. Wolfson, J. Bath, R. Gustafson, M.H. Kryder, and S. Khizroev, "The

role of the gap in perpendicular single pole heads," to be presented at the 1St North

American Perpendicular Magnetic Recording Conference in Coral Gables, Florida,

January 2002.

17

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Lyberatos, S. Khizroev, and D. Litvinov, "High speed coherent switching of fine

grains," IEEE Trans. Magn., Vol. 37(4), p. 1369, 2001.

A. Lyberatos, S. Khizroev, and D. Litvinov, "Thermal effects in high-speed

switching in perpendicular media," to be presented at the 1st North American

Perpendicular Magnetic Recording Conference in Coral Gables, Florida, January
2002.

S. Khizroev, J. Bain, and M.H. Kryder, "Considerations in the design of probe

heads for 100 Gbit/in 2 recording density," IEEE Trans. Magn., Vol. 33(5), p. 2893,

1997.

J.K. Howard, "Effect of nucleation layers on the growth and magnetic properties of

CoCr and CoCr-X films," J. Vac. Sci. Techn., Vol 4(6), p. 2975, 1986.

B. Lu, T. Klemmer, S. Khizroev, J.K. Howard, D. Litvinov, A.G. Roy, and D.

Laughlin, "CoCrPtTa/Ti perpendicular media deposited at high sputtering rate,"

IEEE Trans. Magn., Vol. 37(4), p. 1319, 2001.

T.K. Hatwar and C.F. Brucker, "Coercivity enhancement of Co/Pt superlattices

through underlayer microstructure modification," IEEE Trans. Magn., Vol 31 (6), p.

3256, 1995.

D. Litvinov, T. Roscamp, T. Klemmer, M. Wu, J.K. Howard, and S. Khizroev,

"Co/Pd Multitayer Based Recording Layers for Perpendicular Media," MRS

Proceedings, T3.9, Vol. 674, 2001.

D. Litvinov, H. Gong, D. Lambeth, J.K. Howard, and S. Khizroev, "Reflection

high-energy electron diffraction based texture determination: magnetic thin films

for perpendicular media," J. Appl. Phys., Vol. 87 (9), p. 5693, 2000.

D. Litvinov, R. Chomko, J. Wolfson, E. Svedberg, J. Bain, R. White, R. Chantrell,

S. Khizroev, "Dynamics of Perpendicular Recording Heads," IEEE Trans. Magn.,

Vol. 37(4), p. 1376, 2001.

J. Wolfson, J. Bain, S. Khizroev, and D. Litvinov, "Dynamic Kerr imaging of soft

underlayers in perpendicular recording," presented at MMM, Seattle, Washington,
November 2001.

D. Litvinov, R.M. Chomko, L. Abelmann, K. Ramstock, G. Chen, S. Khizroev,

"Micromagnetics of a soft underlayer," IEEE Trans. Magn., Vol. 36(5), p. 2483,
2000.

R. Wood, "Recording Technologies for Terabit per square inch Systems," presented

at the 1st North American Perpendicular Magnetic Recording Conference, Coral

Gables, Florida, January 2002, to be published in IEEE Transactions on Magnetics,

July 2002.

M. Mallary, A. Torabi, and M. Benakli, "lTb/in2 Perpendicular Recording

Conceptual Design," presented at the 1st North American Perpendicular Magnetic

Recording Conference, Coral Gables, Florida, January 2002, to be published in

IEEE Transactions on Magnetics, July 2002.

18

[26] M.H. Kryder, "PerpendicularRecording- Its Window of Opportunity and What
will ReplaceIt," presentedat the 1_t North American PerpendicularMagnetic
RecordingConference,CoralGables,Florida,January2002.

[27] M. Albrecht,C.T. Rettner,S.anders,T. Thompson,M.E. Best,A. Moser,andB.D.
Terris, "Recording Propertiesof PatternedCo70Crl8Ptl2 PerpendicularMedia,"
presentedat the 1StNorthAmericanPerpendicularMagneticRecordingConference,
Coral Gables,Florida, January2002, to be published in IEEE Transactionson
Magnetics,July2002.

[28] J. Moritz, S. Landis, B. Dieny, A. Lebib, Y. Chen, B. Rodmacq,M. Belin, J.
Fontaine,C. Donnet, and J.P.Nozieres,"PatternedMedia Using Pre-EtchedSi
WafersFabricatedby Nano-lmprintande-beamLithography,"presentedat the 1St
North American PerpendicularMagnetic RecordingConference,Coral Gables,
Florida,January2002.

19

OSD: A Tutorial on Object Storage Devices

Thomas M. Ruwart

Advanced Concepts

Ciprico, Inc.

Plymouth, MN 55441

tmruwart@ciprico.com
Tel: +1-612-850-2918

Fax: + 1-763-551-4002

Abstract

Ever since online digital storage devices were first introduced in the late 1950's and early

1960's, the various functions key to storing data on these devices have been slowly

migrating into the devices themselves. Early disk drives would send analog signals from

the read/write head to a physically separate box that would deserialize and frame data

into bytes. This data would then be sent to other processors to perform redundancy

checks and data transmission to the requesting computer system. As engineers were able

to fit more functionality into smaller spaces at reasonable costs, these key functions were

migrated into the disk drive itself to the point where we now have an entirely self-

contained unit complete with all the electronics that used to fill a small room.

However, even with the integrated advanced electronics, processors, and buffer caches,

these disk drives are still relatively "dumb" devices. They essentially perform only two

functions: read data and write data. Furthermore, the disk drives do not know anything

about the data that they are storing. Things such as content, structure, relationships,

quality of service etc. are all pieces of information that are external to the disk drive

itself. The basic premise of Object Storage Devices is that the disk drive or, more

generically, the storage device, can be a far more useful device if it had more information

about the data it manages and was able to act on it.

This paper is intended to provide the reader with an overview of OSD, its history, its

current state, and possible futures. It begins by presenting a brief history of Object

Storage Devices and then discusses why OSD is an important step in the evolution of

storage technologies in general. The basic OSD architecture is compared with current

Direct Attached Storage (DAS), Storage Area Network (SAN), and Network Attached

Storage (NAS) architectures in terms of management, device and data sharing,

performance, scalability, and device functionality. Finally, the current status of OSD and

related roadmaps are presented as a frame of reference.

Brief History of OSD

The most active work on OSD has been done at the Parallel Data Lab at Carnegie Mellon

University (www.pdl.cmu.edu) originally under the direction of Garth Gibson [1,4,5,6,8].

This work focused on developing the underlying concepts of OSD and two closely

related areas called Network Attached Secure Disks (NASD) and Active Disks. Other

work has been done at the University of California at Berkeley [Keeton], the Universities

of California Santa Barbara and Maryland [3], as well as Hewlett Packard Labs [7,9],

21

SeagateTechnology,and Intel Labs. Topics coveredby theseearly pioneerscan be
brokendown into two maincategories:OSDarchitectureandappliedOSD concepts.The

basic OSD architecture defined to date specifies a set of object functions that can be

implemented over any transport (TCP/IP, SCSI, VI, ...etc.) but the initial transport will

be SCSI for the sake of ubiquity.

Motivation behind OSD

As disk drives and other types of storage devices become denser and more numerous the

block-level methods used to access and manage them are reaching the limits of their

scalability. OSD is a protocol that defines higher-level methods of communicating the

creation, writing, reading, and deleting of data objects as well as other related functions

for getting and setting object attributes. OSD is a level higher than a block-level access

method but one level below a file-level access method. OSD is not intended to replace

either block-level or file-level access methods but rather to add a needed layer of

abstraction that sits between them. It is a technology intended to help make existing and

future data storage protocols more effective in several areas that include:

• Storage Management

• Security

• Device and Data Sharing

• Storage Performance

• Scalability

• Device Functionality

These areas are becoming more critical to the success of storage users as well as the

storage vendors who are increasingly concerned over ways to differentiate their products.

It is quite possible that the OSD architecture will provide both the users and vendors with

a highly flexible base on which to build new storage systems that can accommodate each

of these areas more effectively than trying to extend the current block-based or file-based

protocols.

DAS/SAN/NAS Basic Architectures

There are three basic storage architectures commonly in use today. These are Direct

Attach Storage (DAS), Storage Area Networks (SAN), and Network Attached Storage

(NAS). Each of these is used to solve problems specific to a particular application or

installation. Each has its strengths and weaknesses.

Storage Management

Security

Device and Data Sharing

Storage Performance

Scalability

Device Functionality

DAS SAN NAS

High/low

High
Low

High
Low

High
Medium

Medium

High
Medium

Medium

Low

High
Low

Medium

Low Low Medium

Table 1. Capability assessment based on Technology

22

The DAS/SAN/NAS architectures and how they scale from a single subsystem to

multiple systems are described in diagrams 1-3. Diagrams 4 and 5 show the basic

architecture for OSD and the scaling thereof.

Scales to

Y

Direct Attached Storage

Block-based access to

dedicated storage

Many individual systems and

Applications with Block-based

access to dedicated storage

Diagram 1. A single DAS scaling to multiple DAS systems. Each DAS ,_vstem

could conceivably add more storage devices but this is intended to show that

when the limit of storage device connectivity is reached on a DAS system, the

DAS system must be replicated.

Scales to

Network Attached Storage
Shared File-Based access to

dedicated storage

Many individual systems and applications with Shared
Fil...._e-Basedaccess through the LAN to dedicated storage

Diagram 2. A single NAS scaling to multiple NAS and multiple application

(clients). Note that the NAS boxes themselves can increase in capacity and that

they scale in number independently from the application systems (clients).

23

Scales to

Storage Area Network
Block-Based access to

shared storage

Many individual systems and applications

with Block-Based access to shared storage

Diagram 3. A single SAN scaling to a larger SAN. Note that the storage devices

and application (client) systems scale independently. There is implied device

sharing and data sharing in this diagram.

Diagram 4. A basic OSD architecture. Unlike DAS/SAN/NAS the Object

Manager is a separate enti_ from the OSD and the application system (client).

The transport for OSD can be either a LAN or a SAN.

24

Diagram 5, Scaling a basic OSD architecture allows for increasing the number

of OSD indefinitely as well as the application systems (clients). The Object

manager can scale from a single system into a .fully distributed cluster to

accommodate the OSD and application system scaling. The transport .for all

these components can be either a LAN or SAN.

Basic OSD Architecture

One of the many motivations behind OSD was to take the strengths of each of the

DAS/SAN/NAS architectures and incorporate them into a single framework. The basic

OSD architecture and its scalability are shown in diagrams 4 and 5. There are many
similarities between and OSD architecture and the DAS/SAN/NAS architectures. These

include the use of Fibre Channel, Ethernet, TCP/IP, and SCSI protocols as transports and

protocols. There are also several significant differences between OSD and the

DAS/SAN/NAS architectures. These differences include the use of the following logical

components:

• Object Manager

• OSD Intelligence

• File Manager

The Object Manager is used as a global resource to find the location of objects, mitigate

secure access to these objects, and to assist in basic OSD management functions. This can

be a single OSD that assumes these functions or it can be a completely separate, fully

redundant cluster of systems. An Object Management Cluster would allow for scalability

25

in the number of objects that can be managed as well as the access performance of the

Object Manager itself. It is important to note that the Object manager does not contain

any user data or object meta-data nor does any of the data during a data transfer operation

move through the Object Manager. The Object Manager is strictly used to facilitate

location and secure access of objects.

The OSD Intelligence is the software (firmware) that runs on the storage device. It is

responsible for interpreting the various OSD methods (commands): Create Object, Delete

Object, Read Object, Write Object, and Get/Set Attributes. Furthermore, the OSD

Intelligence can also provide the following capabilities:

• Object attribute interpretation

o Object structure and relationship awareness

o Object content awareness

o Quality of Service (QoS)
o Access Patterns

o Security

• Sense of time

• Awareness and ability to communicate with other OSDs

• Device and data management

The OSD intelligence facilitates the communication of the OSD to the Object Manager

for security purposes but mainly manages data processing and transfers between itself

and the File Manager on the client requesting the data transfer. Since the OSD now has

the intelligence to perform basic data management functions (such as space allocation,

free space management etc.) those functions can be moved from the File SYSTEM

manager to the OSD. The File SYSTEM manager now becomes simply a File Manager:

an abstraction layer between the user application and the OSD. The File Manager

provides backward compatible API for legacy codes to access files on OSD and, more

importantly, it provides the security mechanisms required to ensure data privacy and

integrity. More advanced capabilities of OSD can be exposed through the File Manager

for user and system programs that wish to use them.

DAS/SAN/NAS/OSD Comparison

There are not actually any "new" data management functions in the OSD model. Rather it

is simply a rearrangement of the existing functions in a general sense. From the user

application point of view, the application creates, reads, writes, and deletes files as it

always has. It does not know where the data is stored nor should it care. It does have

certain data requirements (storage management, security, reliability, availability,

performance, ...etc.) that must be met and OSD provides a mechanism to specify and

meet these requirements far more effectively than DAS/SAN/NAS. The following

sections compare and contrast DAS/SAN/NAS to OSD in terms of the requirements
listed in Table 1.

26

Storage Management t

Current estimates show that the cost of managing storage resources is about seven times

the cost of the actual hardware over the operational life of the storage subsystems. This is

independent of the type of storage (i.e. DAS/SAN/NAS). Given the tremendous growth

in storage systems, storage resource management has been identified as the single most

important problem to address in the coming decade. The DAS and SAN architectures rely

on external storage resource management that is not always entirely effective and is in

now way any kind of a standard. The NAS model has some management built into it but

it too suffers from a lack of standards. The OSD management model relies on self-

managed, policy driven storage devices that can be centrally managed and locally

administered. What this means is that the high-level management functions can come

from a central location and the execution of the management functions (i.e. backup,

restore, mirror etc.) can be carried out locally by each of the OSDs and on an OSD

peer-to-peer basis (i.e. a disk OSD backing itself up to a tape library OSD).

The DAS architecture is very simple to manage if there is only one system involved with

some number of storage devices attached to it. All the management functions can be done

from the one system that these devices are attached. However, if there is more than one

system with storage devices attached, then it becomes increasingly difficult to manage all

the storage devices because the management is distributed among all the systems that the

storage devices are attached to. There is no central point of management in this case.

This problem is solved to some extent in a SAN configuration because ideally any one of

the systems has access to all of the storage devices and management can be centralized

on any one of these systems. A similar argument can be made for NAS devices since the

network is a LAN and presumably any system on the LAN can see all of the NAS

devices and hence can manage them all from a single system. Furthermore, the NAS

devices have more "intelligence" built into them by their very nature (i.e. there is an OS

with a file system, a communications stack etc.). This extra intelligence lends itself to

the idea of self-managed storage making the overall task of managing storage resources

somewhat easier. But is there a limit to the size of a system or the granularity of

performance that can be managed in the NAS architecture?

The point here is that centralized management of storage resources (devices, space,

performance, ...etc.) with distributed administrative capabilities (i.e. the ability to carry

out management functions locally) is essential to future storage architectures. In order to

achieve this, the OSD architecture is designed to be self-managed thus more fully

utilizing the OSD Intelligence built into each OSD. The devices will know how to

manage each of several resources individually or through an aggregation of OSDs. These

resources include (but not limited to):

• Space they have available at any given time

• Bandwidth has been requested

• Latency requirements of outstanding sessions

1 In this section, the term "'management" refers to the ability to irlstall, configure, monitor, and administer
the physical and logical slorage devices as well as the space on these devices.

27

• The number of operations it is capable of performing in a given amount of time

Finally, OSD defines the concept of "object aggregation" whereby a hierarchy of OSDs

can be made to appear as a single larger OSD. The resource management of this large

aggregated OSD is done either through a single OSD at the top of the aggregation or can
be done to each of the individual OSD devices in order to achieve maximum resource

management flexibility.

Security

Security is second only to management in importance with respect to a data storage
system. There are two basic threats that a secure system must guard against: External and

Internal threats. External threats are attacks that come from outside the data storage

system and outside the machines that are allowed access to the data on the storage

subsystem. Internal threats are either benign or intentional. Benign threats are accidental

access, modification, or corruption of data on a storage system. Intentional threats are

intended to cause problems. In any case, multiple levels of security are necessary to

authenticate, authorize access, ensure data integrity, and enforce data privacy.

Data security is becoming increasingly complex as the deployed systems and associated

data storage systems grow in number and complexity. On the complexity scale, a DAS

system is only as secure as the system that it is connected to. Assuming that the system is

100% secure, then access to the DAS device is very restricted.

By putting storage devices on a SAN however, there are more opportunities for access to

the storage devices through other hosts that share the SAN. Generally, SANs are isolated

and connected only to "trusted" host systems but there are still many other opportunities

to connect to a SAN (i.e. through unused ports on a switch) and breach security. Since the

SAN storage devices themselves do not have any notion of restricted access it is up to the

host systems and SAN network infrastructure to enforce secure access to the storage
devices.

NAS devices also have only as much security as the networks they are on and the

firewalls and other security measures they implement. Because NAS devices tend to be

on LANs the access restrictions may not be as stringent as those on SANs. However,

since the NAS devices have some intelligence, they can implement more effect security
measures than SAN devices.

The OSD concept incorporates a security model that includes four security levels:

• Authentication - you are who you say you are

• Authorization - you have permission to access to an object

• Data integrity - data is not modified or corrupted

• Data privacy - data is not to be seen by anyone else

The authentication is performed by the OSD transport layer. For example, for OSD over

iSCSI over Ethernet, IPSEC would perform authentication. The remaining three levels

are performed by the OSD itself. The authorization security mechanism is capability-

based whereby the OSD manager gives capabilities to the clients and the clients present

28

thesecapabilities to the OSD. Finally, data integrity and data privacy are achieved
throughtheuseof cryptography.Theseareall featuresthat makeOSD securitydifferent
from NAS securityandcertainlybetterthanDAS andSAN security.

Device and Data Sharing

Concurrent device and data sharing is nonexistent on DAS systems unless the data is

exported through an NFS or CIFS share to other systems. At that point the system

essentially becomes a NAS device. Again, a SAN partially solves the problem by

allowing any system connected to the SAN to access any device connected to the SAN.

This is ideal for device sharing because the SAN provides a very high performance

connection between any system and any device on the SAN. However, the problem of

data sharing is left to the file systems to figure out. There are several ways to solve the

problem of data sharing on a SAN, each with its own strengths and weaknesses. It is

beyond the scope of this paper to describe these other than to say that data sharing is not

always optimal on a SAN particularly in heterogeneous system environments (i.e.

NT/Windows versus UNIX-based systems).

NAS devices are very good at sharing data even in heterogeneous system environments.

The problem that NAS devices run into in this area is performance. There is a significant

amount of overhead involved in performing each data transfer between the requesting

system and the storage device where the bits reside. Furthermore, the store-and-forward

model used by virtually all NAS devices can become a problem if not used correctly.

In the OSD model, the protocol is system agnostic and therefore system heterogeneous by

nature. Since the OSD is the storage device and the underlying protocol is supported on

either a SAN (SCSI) or a LAN (iSCSI), device sharing becomes simple. Data sharing is

accomplished as a result of this as well. The objects contained on an OSD are available to

any system that has permission to access them. It is interpretation of the object that needs

to be common among the systems that becomes important for effective data sharing. That

interpretation is outside the scope of OSD but the ability to access the object is there.

Storage Performance

Performance requirements differ from application to application but they come down to

three basic components that can be described as:

• Bandwidth - the number of" bytes per second that can be transferred between the

requesting system and the storage device

• Latency - the time from the receipt of a request until the first byte of data is
received

• Transactions rate - how many transactions of a particular size can be processed
each second

The performance of DAS can be managed fairly closely because there is only one system

talking to the device at any given time. This system can therefore reorder the request

queue to a DAS device to minimize latency, manage available bandwidth, and maximize

the number of transactions per second.

29

Similarly, on a SAN, anygiven systemis presumablyoneof manyaccessinga storage
deviceat anygiventime. On an individual basis,anygivensystemcanrealizethe same
performanceasa DAS providedno othersystemsareusingthe targetstoragedeviceor
anyotherrequiredresources(hubs,switchports, ...etc.). Thedevice-sharingcapability
of SAN however,makes the task of managingthe storageperformanceexceedingly
difficult. This isbecausethestoragedevicescannotdifferentiatebetweenaccessrequests
andthuscannotgive preferentialtreatmentto anysinglerequestor setof relatedrequests.
Therefore,the bandwidth,latency,andtransactionratesarenot manageableon a SAN
without someknowledgeof therequestingsystemor the databeingaccessed.Neitherof
thesepiecesof informationis availableto thedevicein astandardSAN configuration.

A NAS devicecanaddresssomeof theseissuessinceit canknow somethingaboutthe
files beingaccessedandthe hostrequestingaccess.Thepracticeof file "tagging" is used
to identify certain performancecharacteristicsof files when they are accessed.For
example,if a high-definitionvideo file is being readfrom aNAS device,it could know
that is musttransferthis file using80MB/secof 120MB/secof availablebandwidthon a
specific network connection leaving the remaining 40MB/sec to transfer other files
throughthat samenetworkinterface.This preferentialtreatmentof requestshastheeffect
of providing guaranteedbandwidth,latency,and/ortransactionsper second.But again,
thetremendousoverheadof NAS makesit difficult to competewith eitherDAS or SAN
for rawperformancein thesethreecategories.

The OSD model is very performanceconscious.It is designedto allow performance
characteristicsof objectsto be an attributeof the object itself and independentof the
OSDwhereit resides.If thehigh-definitionvideofile givenin thepreviousexamplewere
on anOSD, it would haveanattributethat specifiedan80MB/secdelivery rateaswell as
a certain quality of service (i.e. a consistent80 MB/sec). Similarly, there could be
different attributes for the sameobject that describedelivery performancefor editing
rather than playback. In editing-mode,the OSD may have to skip around to many
differentframesthuschangingtheway theOSDdoescachingandread-ahead.Similarly,
for latencyand transactionrates,an OSD canmanagethesemoreeffectively thanDAS
and SAN becauseit hasimplicit and explicit knowledgeof the objectsit is managing.
The NAS conceptof "file-tagging" is generalizedand extendedin the OSD model to
accommodatecurrentapplicationsaswell asfutureunforeseenapplicationperformance
andfunctionalityrequirements.

Scalability

The term scalability means many different things. Hence another term, extensibility will

be used in this section to expand upon the term scalability. Many of the items listed under

the heading of "extensibility" can be accomplished by NAS devices. It is a question of

the degree at which a storage device is extensible that is important. The OSD model is a

single open model, not a specific proprietary implementation that is intended to provide

the fundamental architecture that can extend far into each of the extensibility dimensions

yielding years of opportunity and growth of storage systems built on the OSD model.]

30

This is only a partial list of extensibility dimensionsbut it demonstratesthe breadthof
characteristicsthattheOSDmodelencompasses:

• Density - the number of bytes/lOPS/bandwidthper unit volume. OSD on
individual storagedevicescanoptimizethesedensitiesby abstractingthephysical
characteristicsof theunderlyingstoragemediumandhardwareto objects.

• Scalability- whatdoesthatword reallymean?
o Capacity: number of bytes, number of objects, number of files, ...etc.

OSD aggregation techniques will allow for hierarchical representations of

more complex objects that consist of larger numbers of smaller objects.

o Performance: Bandwidth, Transaction rate, Latency. OSD performance

management can be used in conjunction with OSD aggregation techniques

to more effectively scale each of these three performance metrics and

maintain required QoS levels on a per-object basis.

o Connectivity: number of disks, hosts, arrays, ...etc. Since the OSD model

requires self-managed devices and is transport agnostic the number of

OSDs and hosts can grow to the size limits of the transport network.

o Geographic: LAN, SAN, WAN etc. Again, since the OSD model is

transport agnostic and since there is a security model built into the OSD

architecture, the geographic scalability is not bounded.

o Processing Power - Given that the OSD model promotes the development

of Active Storage Device technology it is reasonable to consider scaling

the processing power on an OSD to meet the requirements of the functions

the Active Disk is expected to perform.

• Cost - address issues such as $/MB, $/sqft, S/lOP, $/MB/sec, TCO, ...etc.

• Adaptability - to changing applications. Can the OSD be repurposed to different

uses such as from a film editing station to mail serving?

• Capability - can add functionality for different applications. Can additional

functionality be added to an OSD to increase its usefulness?

• Manageability - Can be managed as a system rather than just a box of storage

devices - Aggregated OSD management? Hierarchical Storage management?

• Reliability - Connection integrity capabilities

• Availability- Fail-over capabilities between cooperating OSD devices. Can this

scale from 2-way failover to N-way failover?

• Serviceability - Remote monitoring, remote servicing, hot-plug capability,

genocidal sparing. When an OSD dies and a new one is put in it's place, how does

it get "rebuilt"? How automated is the service process?

• Interoperability - Supported by many OS vendors, file system vendors, storage

vendors, middleware vendors.

• Power - decrease the power per unit volume by relying on the policy-driven self

management schemes to "power down" objects (i.e. move them to disks and spin

those disks down).

The DAS and SAN devices run into significant problems with extending into many of

these dimensions. Even though these systems are built from many of the same physical

devices, it is the efficiency with which they can be used that is a true differentiator

between DAS/SAN and NAS/OSD. As was previously mentioned in the Storage

31

Performancesection,DAS/SANdeviceshavevery goodperformancebutcannotmanage
that performanceeffectively or efficiently. A NAS systemhasthe potential to manage
performancebut suffersfrom otherperformance-relatedissuesdueto thefile-level access
protocols (NFS/CIFS) used with NAS subsystems.Many of these extensibility
dimensionsare "afterthoughts"and werenever designedinto the NAS model from the
beginning.

On theotherhand,it is theseextensibility featuresthatthe OSDarchitectureis designed
to exploit to allow vendorsto build more application-specificstorage-centricsystems
therebyallowing storagevendorsto moreeasily differentiatetheir productsto address
applicationrequirements.The OSD architecturewasdesignedwith extensibilityin mind
ratherthanasanafterthought.

How OSD Relates to File Systems - An example in Scalability

Current file system technologies that access disk drives directly are "block-based" in

nature. These file systems are responsible for the management of all available disk blocks

on the disk storage devices they manage. Hence, the "file system manager" is the

program that runs on a computer system that manages all the data structures on a disk

storage device that make up a "file system". The file system manager will perform file

creation, data block allocation, tracking of which files occupy which data blocks, control

of access to these files, file deletion, and management the list of free or unused data

blocks. In performing these functions the file system manager examines and manipulates

on-disk data structures such as information nodes (inodes) and directory trees.

The file system manager manages two basic types of data: "meta-data" and "user data".

Meta-data constitutes the file system structure that ultimately contains the user data files.

Therefore, the file system manager has the ability to understand the "structure" of the

"file system" but not the contents of the user data contained in the file system. Also,

from the point of view of the file system manager, a disk storage device is simply a

sequential set of disk blocks where a disk block is typically 512 bytes. All the meta-data

and user data is mapped into this sequential set of blocks. From the point of view of the

storage device, it only knows how to access 512-byte blocks. The storage device has no

concept of the structure of these blocks as it relates to the file system or the data
contained within the blocks.

The problem with the model of a "block-based" file system is that it can be severely

limited in scale. As the number of blocks in the file system grows the task of managing

the location of all the files and associated user data blocks grows as well. In 2001 the

180GB disk drive was shipped that contained 360,000,000 disk blocks. Three of these

disk drives would constitute over one billion blocks to manage. A terabyte-sized file

system would be made up of two billion blocks and a 10-terabyte file system, which is

not uncommon these days, would be 20 billion disk blocks.

The OSD model would move the management of these individual blocks to the devices

themselves. The file system manager would then only need to manage objects - a far

more manageable problem. The fact that a disk device has blocks is completely hidden

32

from anythingoutsidethe disk drive itself. In fact, it doesnot evenhaveto be a "disk"
drive.It couldbea solid-statedevice,a MEMS device,or aquantumcrystaldevice.It no
longermattersto the file systemmanageras long as the devicecanstoreand retrieve
"objects". Now the file systemmanageronly needsto worry aboutmanaging500,000
objectsandthe fact that they takeup theequivalentof 30 trillion 512-byte blocks is no

longer directly relevant.

Functionality

DAS and SAN devices do two things and only two things: they write data and the read

data. This is the limit of their functionality. NAS devices can perform more complex

tasks such as snapshot backups, hierarchical storage management, data replication, ...etc.

because the NAS devices know certain attributes of the files they manage. However,

most NAS device protocols still lack the extensibility to know and more effectively act

upon the data they store.

The OSD model extends beyond the simple attributes of a file and allows for application-

specific attributes that can specify relationships to other objects to form structures or

functional attributes that can instruct the OSD to perform some operation (i.e.

compression, encryption, ...etc) on an object. The OSD model is intended to be used with

the concept of Active Disks [Acharya] or Active Storage Devices. These devices can

have significantly greater functionality than a simple DAS/SAN/NAS device because

they can implicitly or explicitly act on the data they store.

It is this concept of Active Storage Devices that makes OSD so compelling for users and

storage vendors. The reason for this is simple: users need to spend more time working on

and with their data than trying to figure out how to manage it. Storage vendors need to

have some way to significantly differentiate their storage products in an increasingly

commoditized storage market. OSD provides and extensible mechanism to facilitate the

incorporation of unique functionality storage devices thereby differentiating them from

other storage products based on their capabilities not simply bandwidth, transaction rate,

or capacity. Furthermore, since these storage devices are intelligent, they can be self-

managed, autonomous "appliances" that are tailored to meet the requirements

(processing, performance, reliability, ...etc.) of specific applications.

OSD Roadmap

The concept of OSD has been around and in development for the past 10 years. Much of

this work was pioneered by Garth Gibson and his research team at the Parallel Data Lab

at CMU funded in part by Seagate. Recently however, an OSD Technical Working group

has been formed as part of the Storage Networking Industry Association (SNIA -

www.snia.org). The charter of this group is to work on issues related to the OSD

command subset of the SCSI command set and to enable the construction, demonstration,

and evaluation of OSD prototypes over the next several years. The command

specification is to a point where working prototypes have been demonstrated by

companies such as Seagate and Intel but no production or enterprise-level products have

resulted from these prototypes yet.

33

Summary

OSD is an enabling technology for the development of active storage devices. By

allowing the storage devices to understand, interpret, and act upon the data they store,

new classes of storage-centric devices can be brought to market that enhance customer

workflows while reducing total cost of ownership. OSD can also allow for more highly

differentiated storage products based on capabilities rather than simple capacity, or raw

performance thereby enhancing a storage vendor's ability to serve their respective
markets.

References

[1] E. Riedel, G. Gibson, and C. Faloutsos, "Active Storage for Large-Scale Data

Mining and Multimedia", Proceedings of the 24 th International Conference on

Very Large Databases (VLDB '98), August 1998

[2] K. Keeton, D. A. Patterson, J.. M. Hellerstein, "A case for Intelligent Disks

(IDISKs)", SIGMOD, August 1998

[3] A. Acharya, M. Uysal, and J. Saltz, "Active Disks", ASPLOS, October 1998

[4] E. Riedel, G. Gibson, C. Faloutsos, G. Granger, D. Nagle, "Data Mining on an

OLTP System (Nearly) for Free", SIGMOD, May 2000

[5] H. Gobioff, G. Gibson, and D. Tygar, "Security for Network Attached Storage

Devices", White Paper CMU-CS-97-185, October 1997

[6] G. Gibson et al, "Filesystems for Network-Attached Secure Disks", White Paper

CMU-CS-97-118, July 1997

[7] E. Borowsky et al, "Using Attribute-managed Storage to Achieve QoS", Hewlett-

Packard Laboratories White Paper

[8] G. Gibson et al, "File Server Scaling weith Network-Attached Secure Disks",

SIGMETRICS '97, June 1997

[9] E. Riedel (HP), G. Gibson, and C. Faloutsos, D. Nagle (CMU), Active Disks for

Large-Scale Data Processing", IEEE Computer, June 2001

34

IP Storage: The Challenge Ahead

Prasenjit Sarkar, Kaladhar Voruganti
IBM Almaden Research Center

San Jose, CA 9512(11

{psarkar,kaladhar }@almaden. ibm. corn
tel +1-408-927-1417

fax + 1-408-927-3497

Abstract

Advanced networking technology has led to the genesis of the storage area network

model, where host servers can access storage as a service from various devices connected

to the network. While the initial approach to storage area networks has involved

specialized networking technology, the emergence of Gigabit Ethernet technology has

raised the question of whether we can use commodity IP networks for storage. This paper

examines the issues involving IP storage networks and presents a performance analysis to

dispel some of the myths and outline some of the challenges.

1 Introduction

With the steady increase in the storage needs of most organizations, block storage

management is becoming an important storage management problem. Application

servers, databases and file systems ultimately rely on the presence of an efficient and

scalable block storage management system.

In the past, the storage model assumed the presence of storage attached to every host

server. This type of host server-attached storage relied on the Small Computer System

Interface (SCSI) protocol. The SCSI protocol emerged as the predominant one inside host

servers due to its clean, well-standardized message-based interface. Moreover, in later

years, it supported command queuing at the storage devices and allowed for overlapping

commands. In particular, since the storage was local to the server, the preferred SCSI

transport used was Parallel SCSI where multiple storage devices were connected to the

host server using cable-based bus. However, as the need for storage and servers grew, the

limitations of this technology became obvious. First, the use of parallel cables limits the

number of storage devices and the distance of the storage devices from the host server.

The limits imply that adding storage devices might mean the need to purchase a host

server for attaching the storage. Second, the concept of attaching storage to every host

server means that the storage had to be managed on a per-host server basis, a costly

implication for centers with a large number of host servers. Finally, the technology does

not allow for an easy sharing of storage between host servers, nor typically does the

technology allow for easy addition or removal of storage without host server downtime.

The lack of scalability and manageability of the host server-attached storage model led to

the evolution of the concept of a storage area network. Storage devices are assumed to be

independent machines that provide storage service via a network to a multitude of host

servers. The attraction of this approach is that host servers can share a pool of storage

devices leading to easier storage administration. The advent of networking infrastructure

capable of gigabit speeds further facilitates the service of storage over the network.

35

Furthermore, storage can be added, removed or upgraded without causing any host server

downtime. In addition, the distance limitation of the host server-attached storage model is
also removed.

Approaches to storage area networks have involved specialized technology such as

HIPPI, VaxClusters, Fibre Channel and Infiniband [3][6][7]. The motivation behind the

design is to construct a network that meets all the performance and connectivity

requirements of a storage area network. The downside to these storage area networks is

the requirement to purchase specialized adapters, switches and wiring for equipping the

network. Furthermore, since storage area networks are not expected to be very high-

volume, the cost of these components tends to be on the higher side in comparison to

commodity Ethernet networks. Finally, all these specialized networks have very limited

support for wide area networking and security. In fact, accessing such specialized storage

area networks over long distances requires an IP network bridge.

The question then arises - is it possible to transport the SCSI storage protocol over

commodity Ethernet IP networks [2] and still satisfy the performance requirements of

storage area networks?

The advantages of IP networks are obvious. The presence of well tested and established

protocols such as TCP/IP allow IP networks both wide-area connectivity as well as

proven bandwidth sharing capabilities. Furthermore, the emergence of Gigabit Ethernet

and the future arrival of 10 Gigabit Ethernet seems to indicate that the bandwidth

requirements of serving storage over a network should not be an issue [1]. Finally, the

commodity availability of IP networking infrastructure indicates the cost of building a

storage area network will not be prohibitive.

This paper examines the issues involved in developing a high performance storage area

networking solution. We present a performance analysis of a software-based IP Storage

Area network. First, we measure the latency of block transfers to show that the protocol

overhead of TCP/IP is minimal. Second, we do throughput measurements to show that

while it is theoretically possible to saturate a Gigabit Ethernet network but that the CPU

utilization is high compared to that in specialized storage area networks. We conclude

this paper with an assessment of various hardware and software techniques that can help

obtain high bandwidth at low CPU utilizations.

2 IP Storage

With the steady increase in the storage needs of most organizations, block storage

management is becoming an important storage management problem. Both databases as

well as file systems ultimately rely on the presence of an efficient and scalable block

storage management system. The Small Computer System Interface (SCSI), rather than

Advanced Technology Attachment (ATA), is the block management protocol of choice

for most storage area network solutions because it supports command queuing at the

storage devices and allows for overlapping commands. The SCSI protocol is mostly

implemented over the parallel SCSI cable technology where multiple storage devices are

connected to a SCSI bus via a cable. Though parallel SCSI technology supports gigabit

36

networkspeeds,thedistance(few meters)andtheconnectivitylimitations (16devicesto
a channel)are hamperingits acceptanceas the gigabit networking transport layer of
choice for the emerginglarge storageareanetworks. In addition, the parallel SCSI
technologyis moresuited to attachto a specific host rather thanbeing availableas a
network service which can be managedseparately.Thus, specializednetworking
protocolssuchasFibreChannel[3] andInfiniband [5] havebeendevelopedto overcome
theselimitationswhile still providingnetwork-attachedblock storageat gigabitspeeds.

TheFibreChannelprotocolcoversthephysical,link, networkandtransportlayersof the
OSI network stack.Fibre Channelprovidessupportfor manydifferent serviceclasses.
The FibreChannelprotocol containsa SCSIoverFibre Channeldefinition calledFCP.
TheFCPprotocoloptimizesdatatransferby enablingzero-copytransfersto thereceiving
hostandreducesbufferingrequirementsby makingeveryframeself-describing.TheFCP
protocolalsocontainsa simpleandconservativeflow controlmechanism.

The Infiniband protocol also covers the physical, link, network and transport layers of the

OSI network stack. The Infinband protocol provides support for many different service

classes like Fibre Channel. In addition, the Infiniband protocol provides the QueuePair

programming abstraction that allows application programs to transfer data directly from

the network card into the application. The protocol provides the notion of verbs that

allows application programs to send and receive data. The Infiniband protocol is similar

to Fibre Channel in that it also supports a simple and conservative flow control
mechanism.

Storage over IP is currently driven primarily by the iSCSI protocol [4] that defines the

operation of SCSI over TCP and tries to leverage the existing TCP over IP over Gigabit

Ethernet infrastructure. The goal of iSCSI is to leverage TCP flow control, congestion

control, segmentation mechanisms, and build upon the IP addressing and discovery

mechanisms to create a seamless and scalable storage area network, iSCSI can be

implemented as a combination of network adapter card with the TCP/IP and iSCSI layers

in software. This approach has the appeal of benefiting from the commodity appeal of

existing network adapters and switches, an important factor in lowering infrastructure
costs.

The challenges of building a storage area network over IP are not trivial. Detractors of IP

storage area networks point out that the overhead of using TCP is prohibitive enough to

result in poor latency tbr transaction-oriented benchmarks. It is also pointed out that

common network application programming interfaces such as sockets do not allow for

zero-copy transmits and receives of data leading to the overhead of multiple data copying

[5]. Such data copying is considered harmful for overall throughput and will affect bulk-

data scientific and video applications. Finally, data is transferred from the network

adapter to the host machine using frame-size transfers. This means that every bulk data

transfer may involve multiple interrupts instead of at most one interrupt in the case of

specialized storage networks. Consequently, the interrupt overhead can be the limiting

factor in peak throughput if the storage device or host server CPU spends the majority of

its cycles processing interrupts.

37

3 Performance Analysis

We present a performance evaluation of a software implementation of IP storage and

point out the performance characteristics that meet the requirements of storage area

networks and those that do not. Our test-bed aims to determine the latency and

throughput characteristics of a host server connected to a storage device over a Gigabit
Ethernet network.

We use the iSCSI protocol [4] to transfer SCSI blocks between the storage device and the

host server. The iSCSI protocol is a standard for transporting SCSI blocks over TCP/IP

and is expected to be an IETF standard by early 2002. The key features of the iSCSI

protocol are:

• Explicit login with the option to negotiate features such as security

• Authentication using SRP and other optional algorithms

• Trunking using multiple TCP/IP connections between storage endpoints

• Digests using CRC-32C and other optional schemes

• Encryption using IPSEC based algorithms

• Framing for faster recovery at high gigabit speeds

• Scalable discovery mechanisms using SLP and other protocols

The storage device is a dual-733 MHz Pentium III with 128 MB of memory and running

iSCSI server software on top of Linux 2.4.2. The host server is an 800 MHz Pentium III

with 256 MB of memory and running iSCSI client software on top of Linux 2.2.19. The

two entities are connected via a Gigabit Ethernet connection over an Alteon 180 switch.

The Ethernet flame size used was the regular 1500 bytes and no Jumbo frames were used.

In addition, TCP/IP zero copy optimizations were not used. Instead, we relied on the

standard socket interface that meant that the TCP copy-and-checksum routines were

performed on both the host server and the storage device.

The test application resided on the host server and read raw SCSI blocks off a SCSI

volume exported by the storage device. Since we wanted to isolate the efficiency of the

transport, the application always read the same block so as to ensure a cache-hit.

Otherwise, a cache miss would involve the RAID subsystem of the storage device and

make it difficult to analyze the results. Writes were not measured as they can be done

using various means (immediate, unsolicited, solicited) and add unneeded complexity to

the analysis.

3.1 Latency Analysis

To measure latency, we used a single thread in the application to read raw SCSI blocks of

various sizes from the storage device. For a particular block size, the same block was

read 10,000 times and the average latency determined from the time required to perform

the experiment. To measure throughput, we used 8 concurrent threads to read SCSI

blocks of various sizes from the storage device. 8 threads were used because that is the

concurrency limit imposed by the iSCSI client software in the host server. For a

particular block size, each thread read a block 10,000 times and the throughput was

calculated based on the time taken for all threads to finish reading the blocks. For the

38

throughputexperiment,we measuredtheCPUutilizations of the hostserverandstorage
deviceusingthe vrnstat utility.

The latency measurements shown in Figure 1 indicate a variation of average latency for

283 us for a 512-byte block to a high of 2469 us for a 64 KB block. The average latency

values provide no meaning by themselves but are comparable (within 5%) of latency

numbers obtained from the specification sheet of a Fibre Channel storage device for all

block sizes [8]. We had expected the cost of TCP/IP segmentation to have an adverse

effect on latency for the larger block sizes, but it appears that the Gigabit Ethernet adapter

is doing a reasonable job of interrupt coalescing. This indicates that the TCP/IP fast path

for transmits and receives does not impose a prohibitive overhead on latency.

Consequently, we do not expect IP storage (even in its software incarnation with no

optimizations) to have an adverse effect of transaction-oriented applications and
benchmarks.

Figure 1. Latency Measurements

A

C

.J

30O0

2500

2000

1500

1000

500

0

0.5 1 2 4 8 16 32 64

Block Size (KB)

3.2 Throughout Analysis

However, the throughput measurements indicate a different story. Figure 2 indicates that

while the average throughput from the storage device is competitive for the lower block

sizes in comparison to that obtained from a Fibre Channel storage device, the peak

throughput is about 60% less than what is obtainable from a Fibre Channel storage

device[8]. In these experiments, the peak throughput is about 52 MBps for the 64 KB

block size and is constrained by the CPU of the host server whose utilization is at 100%.

A profiling of the CPU utilization of the host server indicated that the primary

components were interrupt overhead (72%) and TCP copy-and-checksum (23%).

39

In addition, during the throughput experiments for the 64 KB block size, the CPU

utilization of the storage device is at 51% indicating that the storage device is capable of

delivering additional throughput. In fact, by using multiple initiators, we are able to

obtain a throughput of 100 MBps at around 98% CPU utilization in the storage device. At

this throughput, the constraining factor was the limit imposed by the network adapter.

The CPU utilization figures were not available for the Fibre Channel storage device [8].

The CPU utilization of the host server is greater than that of the storage device because

the host server is the receiver of bulk data. The receiving of data involves interrupting the

host server every time a frame arrives and increases the interrupt overhead even if

interrupt coalescing is used. This implies that if the experiments above involved writes,

then the CPU utilization of the storage device would be higher.

Figure 2. Throughput
Measurements

A

O.
m
=E

Q.

O
t,.

e-
l--

60

50

40

30

20

10

0

0.5 1 2 4 8 16 32 64

Block Size (KB)

The results indicate that the main performance bottleneck in meeting the requirements of

storage area networks is the high CPU utilization involved with bulk data transfers. The

two main components of the high CPU utilization are:

• Interrupt overhead due to frame size transfers from the adapter to the host at high
rates.

• The overhead due to TCP copy-and-checksum in standard TCP/IP stacks for bulk
data.

4 Improvement Techniques

There are four potential avenues to reduce the high CPU utilization issues in an 1P

storage subsystem.

4O

First, the interrupt overhead can be reduced by using 9KB Jumbo Ethernet frames,

because this reduces the number of interrupts per bulk data transfer. For example,

transferring a 32 KB data payload using the standard Ethernet frame may involve as

many as 22 interrupts in the worst case whereas using the 9KB Jumbo Ethernet frame

only 4 interrupts may be involved. However, the Jumbo Ethernet frames are not

standardized and are not likely to be present in 10 Gigabit Ethernet.

Second, modified TCP/IP stacks with zero-copy transmit capability can be used to reduce

the TCP copy-and-checksum overhead; the responsibility of generating the checksum is

off-loaded to the network adapter. However, zero-copy receives are not possible on such

stacks because the network adapters are typically unaware of the final destination of any
frame.

Third, network adapters with TCP/IP offioad engines (TOE) have been released [9]

where the entire TCP/IP stack is offloaded onto the network adapter. This also reduces

the TCP copy-and-checksum overhead. However, zero-copy receives are not possible on

such stacks because the TCP/IP stack is also typically unaware of the final destination of

any TCP/IP packet. There is proposed work to add enough application hints to the

TCP/IP header to make zero-copy receives possible.

The fourth and most promising approach is the anticipated emergence of specialized

adapters that have an iSCSI interface. This approach will reduce the interrupt overhead,

as the iSCSI adapter will ensure at most one interrupt per data transfer. In addition,

offioading the protocol processing to the adapter will eliminate TCP/IP copy-and-

checksum overhead. The disadvantage of this approach is that the use of such specialized

adapters implies that commodity network adapters cannot be used in IP storage area

networks. However, one can still use the existing switches and wiring present in

commodity Ethernet networks.

5 Conclusions

Advanced networking technology has led to the concept of storage networks where

pooled storage is available as a service to host servers. The emergence of Gigabit

Ethernet technology has raised the question of whether we can use commodity IP

networks for storage instead of specialized storage area networks. This paper examines

the issues involving IP storage networks and presents a performance analysis focusing on

latency and throughput. The results indicate that the main performance bottleneck in

meeting the requirements of storage area networks is the high CPU utilization involved

with bulk data transfers. The two main components of the high CPU utilization are the

interrupt overhead due to the bulk data transfers as well as the TCP copy-and-checksum

overhead. We finally present four potential avenues to reduce the high CPU utilization

issues in an IP storage subsystem.

41

References

[1] A. Gallatin, J. Chase, and K. Yocum, "Trapeze/IP: TCP/IP at Near-Gigabit Speeds",

Proceedings of USENIX Technical Conference (FreeNix Track), June 1999.

[2] R. Van Meter, G. Finn and Steve Hotz, "VISA: Netstation's Virtual Internet SCSI

Adapter", ASPLOS- VIII, October 1998.

[3] A. Benner, "Fibre Channel." Gigabit Communications and I/O For Computer

Networks", McGraw-Hill, 1996.

[4] J. Satran et al., "iSCSI", IETF Work in Progress (IPS group),

http://www.ietf.org/html.charters/ips-charter.html, 2001.

[5] Hsiao Keng, and J. Chu, "Zero-copy TCP in Solaris", Proceedings of the USENIX

1996 Annual Technical Conference, January 1996.

[6] http://www.infinibandta.org

[7] K.Voruganti, and P. Sarkar, "An Analysis of Three Gigabit Networking Protocols for

Storage Area Networks'. 20th IEEE International Performance, Computing, and

Communications Conference ", April 2001.

[8] Mylex Corp., "'White Paper on the Performance of the Mylex SanArray Pro FF2

Storage Controller", Mylex Technical Report, 2001.

[9] http://www.alacritech.com

42

File Virtualization with DirectNFS

Anupam Bhide, Anu Engineer, Anshuman Kanetkar, Aditya Kini

{anupam, anu, anshuman, aditya}@calsoflinc.com

CalSoft Private Limited, Pune 411 013, India

Tel: +91 20 567-4644

Fax: +91 20 567-7279

Christos Karamanolis, Dan Muntz, Zheng Zhang

{christos,dmuntz,zzhang,gary_thunquest}@hpl.hp.com
HP Research Labs

1501 Page Mill Road, Palo Alto CA 94304-1126
tel: +1 650 857-1501

Gary Thunquest
HP Colorado

{gary_thunquest} @hp.com

Abstract

There is a definite trend in the enterprise storage industry to move from Network

Attached Storage (NAS) solutions to high performance Storage Area Networks (SAN).

This transition is not easy because of the well-entrenched NAS infrastructure that has

already been deployed. This paper attempts to define a file system that can leverage the

existing NAS software infrastructure along with evolving SAN technology to provide

the benefits of high performance storage access while reducing the cost of migrating to
these networks.

In this paper, we propose a new network file system, DirectNFS, which allows NAS

clients to take full advantage of the performance and scalability benefits of SANs. In

order to achieve this goal, the system presents a NAS interface to existing NAS clients

while allowing DirectNFS clients to access storage directly over shared SAN, i.e.

clients bypass the server for data access. A server maintains the NAS interface for

legacy clients and arbitrates access to metadata by DirectNFS (SAN aware) clients. This

metadata server ensures that the system is operable for both legacy NAS clients as well

as DirectNFS clients. The communication protocol of DirectNFS is designed as an

extension of traditional network file systems protocols, such as NFS and CIFS.

A prototype of DirectNFS has been built for Linux, as an extension to the native NFSv2

implementation. Initial results demonstrate that the performance of data intensive

operations such as read and write is comparable to that of local file systems, such as
ext2.

1. Introduction

For the past few years, there has been an increasing trend to replace NAS storage

systems by SAN. The primary reasons for this migration have been the increased data

storage requirements that constantly plague the enterprise computing environment.

SANs provide seamless expansion, combined with high throughput, and increased

manageability. However, NAS architecture has been around for many years and has a

well-entrenched installed base. The migration to SAN makes this NAS infrastructure

obsolete and adds to the cost of already expensive SAN systems. One major drawback

of the SAN systems that are deployed now is the lack of interoperability. However, this

43

situationwill eventuallybe remediedasmoreusersadoptSANsandasSAN standards
evolve.
Today,with multiple operatingsystemsandmultiple vendorplatformspresentin most
datacenters,SAN inter-operabilityis highly valued. NAS technologies,on the other
hand,arematureandinteroperable.They usede-
facto standardssuchasNFS[1] and CIFS[2] to
providedataaccess.NFSclientsareavailablefor
almostall platforms.Both NFS and CIFS have
mechanisms to control and synchronize
simultaneousaccess to shared data. These
inherentfeaturesof NAS weretakenadvantage
of in thedesignof DirectNFS.
A simple way of using the SAN, as shownin
Figure 1, is to retain the familiar client/server
model,with all thestorageresourceson theSAN
appearingas local disks to the server.All the file
accessesby clientsin this scenarioareforcedto pass

LAN

Figure 1 : SAN with NAS Clients

through the file server. This creates heavy loads on the file server.

In order to eliminate this overhead of data being copied through both SAN and LAN,

the clients must be given the ability to access the data directly through SAN. To enable

clients to access data directly, we have to provide them with a file location map that
describes on which device and on which block the file data resides - information that is

maintained as part of the metadata of the file system.

There have been different solutions to the distributed storage problem, ranging from

"Shared Everything" to "Shared File Volume" architectures. In a "Shared Everything"

filesystem, all clients maintain data as well as metadata portions of the file system. Most

of the cluster file systems follow this approach (Petal /Frangipani[3], GFS[4]). In a

"Shared File Volume" filesystem, one central entity is in charge of updating the data

and metadata. Most client / server file systems follow this approach (NFS, CIFS). In a

"Shared Everything" approach the implementation of the file system and its recovery on

failure is complex. On the other hand, in a "Shared File Volume" approach, the

scalability and performance of the file system are limited due to the existence of a

single server. In the design of DirectNFS we have chosen to tread a middle ground

between these two approaches. We have chosen to create a shared architecture for data,

by making the clients aware of the physical layout of each file, which allows the clients

to access data directly through the SAN. However, we do not allow clients to modify

the metadata directly. Once we allow the clients to access data directly, the NAS-

provided guarantees of single system semantics break down. This is unacceptable

because a lack of single system semantics would lead to corruption of the file system.

The solution is to create an entity that enforces these semantics, and this entity in

DirectNFS is known as the metadata server. The metadata server is responsible for all

metadata modifications in the file system. Since most filesystem metadata operations

are atomic in nature, a single authority in charge of metadata modifications makes file

system implementation and recovery easier. The metadata server also provides NAS

44

interfacesto legacy clients for interoperability. This approach does have a drawback of

introducing a single point of failure (metadata server) which makes the system less fault

tolerant as compared to "shared everything" file systems. We believe that the potential

gains from implementing a "shared LAN

everything" file system and making it I J I]

compatible with legacy clients are not n[[--]---]

worth the complexity of the

implementation.
DirectNFS clients are allowed to

cache the block metadata, or the Server

information pertaining to location of files.

Coherency is enforced using a lease

protocol. The metadata server acts as an
arbitrator between the clients to make sure

that the cached metadata is valid. The VJgure2-DirectN_SN_tworkArchit_cture

network architecture of DirectNFS is shown in Figure 2. By adding a SAN connection

and DirectNFS software to each client, clients can utilize the file server for file system

metadata access, locking, and coherency, but they read and write file data directly from

the storage, bypassing the file server. The introduction of a simultaneous data access

path can improve file serving performance through parallel and direct transfer of data

between the data sources and the client systems. This also achieves better utilization of

the file server by reducing the CPU and network load on the metadata server. Clients
that either do not have a SAN connection or do not have the DirectNFS software can

continue to access data through the server using the NFS or CIFS protocol clients,

which they already have. This makes DirectNFS a powerful tool in migration of

existing LAN/NAS combination to SAN.

We have implemented a GNU/Linux prototype of DirectNFS. Many platforms such as

FreeBSD, Solaris and HP-UX were considered for reference implementation.

GNU/Linux was chosen primarily because of the ease of source code availability,

general acceptance in terms of usage and the support from the large community of
hackers.

In our GNU/Linux prototype, we have demonstrated throughput comparable to that

of a local (ext2) file system. Thus, we provide client applications the ability to have

both shared file access and near local file system performance simultaneously. We have

also observed lower server resource utilization in the metadata server compared to a

NAS server, which implies that DirectNFS can support more clients than traditional

NAS servers. DirectNFS implementation is transparent to applications running on the

clients: no source code changes are necessary to client applications. During system

operation, DirectNFS can be turned on or off without altering the file system semantics.

In this paper, in section two we talk about the goals associated with the DirectNFS

design, section three talks about the design in detail. Section four of this paper deals

with the Linux prototype. Section five discusses work done previously in this area. In

section six, we highlight the performance achievements of DirectNFS. We present

future directions for DirectNFS in section seven, and conclude in section eight.

45

2. DirectNFS Design Goals

In this section, we provide a list of design objectives of the DirectNFS architecture. In

subsequent sections, we discuss the DirectNFS architecture in greater depth.

• Storage Scalabi/ity - Storage space must scale well with the continuous
accumulation of data.

• High Performance - DirectNFS aims to provide a high performance remote file

system, with orders of magnitude performance improvements over traditional NAS

protocols.

• File System Scalability and Recovery - To create a simple distributed file system

that can provide both scalability and recoverability.

• Independence from Physical File Systems - DirectNFS must be able to run

irrespective of the underlying physical file system that is used for storage.

• Portability - DirectNFS should be portable to other Operating systems without
much effort.

File Virtualization over SANs - Enable the seamless integration of Storage Area

Networks into NAS environments by adding a "File Virtualization" layer on top of

the block-level interface that SANs provide.

3. Design

%

Legacy

NAS

client

NAS Protocols

DirectNFS Protocol

Direct Data Access

Figure 3: DireetNFS Architectural Overview

The basic philosophy behind the design of

DirectNFS is the separation of data from

metadata operations to increase parallelism

in file system operations. Only read and

write operations are taken over by

DirectNFS client software, all the other file

system operations are still performed

through the NAS protocol. This makes

DirectNFS design portable, thereby

enabling us to use the same design on a

host of other platforms including NT, BSD,
Solaris and HP-UX.

The Figure 3 shows these operations more

clearly, the communication between the

DirectNFS client and metadata server. This

communication includes lease protocol communication to maintain metadata coherency,

the metadata information requests and NAS protocol functionality that is not intercepted

by DirectNFS. The legacy NAS client communicates with the metadata server as if it

were an ordinary NAS server.

3.l.Architecture Overview

This section provides an overview of DirectNFS architecture including DirectNFS

extensions to the NFS protocol, cache coherency mechanisms, optimizations, and

security.

46

3.1.1. Extensions to NFS

DirectNFS defines extensions to the NFS-RPC[5] protocol that implement the

separation of the data/metadata path. This includes new RPCs used by the clients to

retrieve the physical location of files on the storage (block lists) and additional RPCs to

enforce cache coherency. The native RPC set of NFS is used to perform metadata

operations on the server.

The new RPCs implemented by DirectNFS are,

• GETBLKLIST : This RPC allows the clients to get the block list of the files that

are present in the system. The arguments to this RPC are the NFS file handle

and the byte range for which the block list is requested.

• GETLEASE : This RPC is used by the DirectNFS client to acquire the lease for

locally cached metadata. This RPC can be piggy backed on the GETBLKLIST

RPC. The argument is the NFS file handle and duration. The reply sent by the

server indicates whether the requested lease has been granted or denied.

• VACATELEASE : This RPC is used by the metadata server to ask a client to

release the lease it has on certain file. The argument to this RPC is NFS file
handle.

• VACATEDLEASE : This RPC is issued by the client, when it releases an lease

due to the request from the metadata server.

Using these RPCs, clients are able to retrieve the physical locations of files and access

them directly without conflict.

3.1.2. Metadata Caching and Cache Coherency

DirectNFS clients use extensions to the NAS RPC protocols to retrieve file metadata,

i.e. physical block and device numbers. This file metadata is then cached locally on the

client in a Block-Number Cache (BNC). This allows DirectNFS clients to cache the

most frequently used physical block numbers for files that are most frequently used.

However, introducing a distributed cache also introduces coherency issues, which we

solve using a leases-based protocol.

A lease is a time-bound object granted by a lease server to a lease client. In DirectNFS,

a lease is granted on a per-file basis to clients by the metadata server. The lease

guarantees the client that as long as its lease is valid; it holds the most current copy of

the data object (i.e. the cached list of blocks for the file). Multiple clients are allowed to

share leases on the same data object for read-only access. However, any changes to this

data by a third party can only be made when the server has revoked all other leases.

This revocation is either done explicitly by notifying the client, or implicitly, if the

leases time out. In either case, once the lease expires, the lease-holder has to discard the

cached data protected by the lease.

The time-bound property of leases ensures simple recovery of clients/servers in case of

a crash or network failure. Neither the client nor the server maintains any state. In case

of a system crash, the leases that were issued before the system went down will expire,

which brings the system to a known, stable state. This makes the recovery algorithm

extremely simple to implement, especially when compared to the NLM protocol or

other Distributed Lock Managers.

However, this coherency mechanism does not protect the system against SAN

partitions, which may lead to data corruption - it is assumed that the SAN provides a

reliable and available service for data delivery.

47

WhentheDirectNFSclient needsto read/write

the right lease for the kind of access it needs to

perform. The interaction between DirectNFS

clients and metadata server for lease acquisition
in write and read scenarios is illustrated in

figures 4 and 5 respectively.

Once the lease has been validated, the client

looks up the Block Number Cache for the

physical location of the data. The metadata

server is then queried for metadata information

only in the event of a cache miss.

Metadata caching is augmented with "write

allocation gathering". This is the process of

deferring disk block allocations during file

writes. In DirectNFS, we do write allocation by

gathering write requests at the client. Smaller

byte-range requests are merged into larger

requests, thereby reducing the number of

metadata requests to the server. This

significantly improves performance, by reducing

the number of requests to the server that the

server has to service. "Write gathering" [6]

performed by NFS is similar in its approach

and it is used to exploit the fact that there are

a block of data, it first ensures that it has

Client A Client B Meta Data Server

I -"---------- Get Read Lease

Get Write | _ease

_ _ Vacated
>

Figure 5: Sequence Diagram for Lease Protocol

Interactions (Read-Write Conflict Case)

Client Client B

Get Read Lease

>

Get Read Lease

Grant Read Lease

Meta Data Server

Figure 4: Sequence Diagram for Lease Protocol
Interactions (Read-Sharin_ Case_

often several write requests for the same file presented to the server at about the same
time.

3.1.3. Write Gathering

Distributed-system file access patterns have been measured many times[7]. It has been

found that sequential access is the most common access pattem.

Under DirectNFS, for every write request, a cache miss would result in a

GETBLKLIST RPC being sent to the metadata server. To improve write performance, a

technique called write gathering is employed that exploits the fact that there are often

several write requests for the same file called about the same time. With this technique

the data portions of these writes are combined and a single metadata update is done that

applies to them all. In this way, the number of RPCs being sent out would dramatically

reduce, and considerably improve write performance.

The performance for write gathering depends on the periodicity of the deferred write

requests to the server. Two events can trigger this: the write back cache being flushing

periodically and an eviction notice received at the client.
3.1.4. File Virtualization

One of the major issues of merging SAN and NAS is the basic unit upon which they

operate. The legacy NAS protocols operate at a "File" level abstraction. However, the

SAN systems normally present the block level interfaces that are leveraged by

filesystems.

In the DirectNFS design, we were faced with the problem of maintaining support for

legacy clients, which meant that we needed to maintain the file level abstraction. On the

48

otherhand,thebenefitsof theSAN canbeleveragedif andonly if wewentdown to the
block level. In orderto solvethis problemwe createda "virtualized file interfaceover
SAN", wherethe legacyNAS clients are under the impressionthat the NAS server
storesthe files, but the DirectNFSclientswent below the file abstractionsto leverage
the SAN performanceby usingblock deviceinterfacedirectly. In order to implement
this duality, wehadto achievethedata-metadatasplit andcreateothermechanismslike
the leaseframeworkin order to tacklecomplexitiesarisingout of the mergerof SAN
intoNAS.
TheDirectNFSfile systemhadto mergethesetwo differentworldviewsto createa high
performancedistributedfile system,which offeredaNAS interface.This was achieved

by maintaining a "Virtual File Interface". However, the DirectNFS client behavior can

be compared more to block device driver, than really a NAS file system client. In other

words, we introduced the SAN abstractions and performance to the NAS protocols

without breaking it. This unification of SAN of under NAS is what is referred to as file
virtualization in DirectNFS.

3.1.5. Security Considerations

There are certain assumptions that are critical to DirectNFS architecture that need to be

pointed out while understanding the security mechanisms in DirectNFS. They are

• The base NFS protocol operates on atomic data entities known as files.

• DirectNFS does not alter the semantics of NFS protocol

• DirectNFS relies on the file system and block device layer to provide security that is
needed.

DirectNFS has modified the VFS layer[8] of NFS communication not the NFS

semantics. The real physical file system must be present for DirectNFS to work. This is

a strict requirement because we still rely on the file abstraction to maintain the

coherency of data.

In DirectNFS, the file system layer is responsible for security and data coherency. In

order to solve the coherency problem at file level, we have created a framework of

leases ensuring that coherency is maintained at the file system level.

However, in case of rogue agents who can access the storage system at the block

interface by bypassing DirectNFS completely, the possibility of unauthorized access

remains, unless the block access mechanism (block device driver) provides security.

We currently provide only file level security but do not provide block level security.

NASD [9] addresses the issue of block level security with the help of special hardware.

If the shared storage contains security mechanisms, for example iSCSI [10] has security

mechanisms built in and when DirectNFS operates on those environments it can be

made to run in a secure mode by leveraging these underlying mechanisms. Thus

DirectNFS relies on existing infrastructure to take care of security (iSCSI, Fiber

channel[11], NFS). This is a conscious design decision made in favor of making this

protocol run on extremely varied range of hardware.

49

4. Implementation of the Linux Prototype

The implementation philosophy of DirectNFS was to reuse existing libraries as far as

possible and to maintain portability. It was implemented as a kernel loadable module on

Linux 2.4.4, and it consists of roughly 8000 lines of code on the client and 1500 lines of
code on the server.

DirectNFS Client DirectNFS Server

VFS [

I DirectNFSRedirector],_--_ Lease

• • I1 Service

I

knfsd]

I; q RPC Client/Server

Iwsl
Lease

DirectNFS J

Seiice [[

Transport [[Physical File System

Figure 6: DirectNFS Software Architecture

4.1.DirectNFS with FiST

In order to make the implementation easier and portable we have used FiST (File

System Translator). FiST [12] is a stackable file system generator. It defines its own

highly abstract Domain-Specific Language (DSL) for describing file-system filters. A

compiler translates the DSL description to C code for various operating systems. FiST

also provides the necessary infrastructure for interposing the generated filter between

the VFS (Virtual File System) and the natively installed file systems in the kernel. FiST

played an important role in the initial phase of the implementation, when we used it to

generate a code skeleton for a simple, pass-through file system that interposed itself

between the VFS layer and the NFS client.

On the DirectNFS client, the Linux DirectNFS module can be thought of as consisting
of these sub-modules:

1. The DireetNFS Filter/Redirector - This component interposes itself between the

VFS and the NFS client module. It intercepts all file I/O operations (read, write) and

redirects them as block I/O requests over the SAN. This was achieved by modifying

the basic FiST-generated filter to enable us to intercept I/O operations instead of

passing them down the file system stack, which is the default FiST policy. The I/O

interception code in the redirector is system-dependent. The redirector also contains

the Block Number Cache, where the client caches location information for each file

that is accessed over DirectNFS.

50

2. Leasing Service- This is a distributed protocol, which allows multiple DirectNFS

clients to keep their cached metadata coherent. The leasing service has been built as

a library that is independent of the transport mechanism underneath it. This allows

us to plug in any transport mechanism by writing a transport wrapper for the
mechanism.

3. Transport Wrapper - This provides an interface between the leasing service and

the transport layer, in this case - RPC. This wrapper allows the file system client to

query file location information (i.e. block numbers) from a central server and to

communicate lease requests to the server.
The DirectNFS server module consists of:

1. Leasing Service - This is the server-side counterpart of the leasing service. It is

responsible for maintaining a list of lessees ibr each file, and to resolve lease

conflicts.

2. Transport Wrapper - The transport wrapper on the server as on the client provides

an interface between the leasing service and the transport layer. This wrapper allows

the server to interface with file system clients that query for file location

information and to communicate lease rejections or grants to them.

3. DirectNFS client -- A DirectNFS client is interposed between VFS and the physical

file system, to provide lease-based coherency lbr locally originating file accesses.

This could be from local applications trying to access the physical file system or

from knfsd while it is serving legacy NAS clients.

The DirectNFS module on the client is responsible for trapping file open, close, sync,

unlink, read, and write calls. Since these operations access the location information of

the file, the file's lease is tested tbr validity. If the lease is invalid, it is acquired by

issuing a GETLEASE RPC to the metadata server. For read and write operations, the

Block Number Cache is looked up for cached block numbers. On a cache miss, a

request is sent to the server, with a piggybacked lease request, if required. This is done

with the GETBLKL1ST RPC. Once the client is granted a valid lease on the file, and

receives the requisite file location information, it accesses those blocks directly over the
SAN.

In the event that the client receives a VACATE RPC, which signals the server ordering

an eviction of the lease that the client holds on the rnetadata, the client flushes the cache

that is associated with the file, and then proceeds to inform the DirectNFS server by

sending the VACATED RPC.

Note that the DirectNFS Leasing Service makes the following assumptions:

1. The lease is time-bound, has a fixed duration, and must be renewed explicitly at the

server in order for its time period to be extended.

2. The clock skew between the participating entities in the lease protocol is bounded.

3. The time taken by the client to flush its cached after eviction is bounded.
Lease conflicts are resolved by the lease server usin

Read

Read Shareable

Write Non

Shareable

3 the matrix in Table 1.
Write

Non

Shareable

Non

Shareable

'Fable I: Compatibility Matrix for I)ireetNFS Leases

51

5. Performance

35000
30000

25000
20000

15000
10000

5000
0

Read Comparison

2GB 1GB 500 100
MB MB

File Size

• DirectNFS
i

!lExt 2

[] Reiser
I"1NFS 2

:•NFS 3

Figure 8: Read Comparison

Linux, with custom-built kernels from the

2.4.x series. They were connected to a

JBOD (HP Rack Storage/12) of four Ultra 3

Hot-Swap SCSI[15] disks 9 GB each. The

system was set up in a SCSI multi-initiator

arrangement, with two machines acting as

DirectNFS clients, and one machine as the

DirectNFS metadata server, with all three

machines sharing access to the JBOD

through a shared SCSI bus. This was used

to emulate a SAN. The benchmarking

One of the principal objectives of

DirectNFS is performance. In this

section, we present the performance

numbers that we obtained from the

prototype implementation. We have

measured the performance of

DirectNFS against other file systems

like ReiserFS[13], ext2 and NFS

versions 2 and 3114]. The systems
under test were three HP Netserver LC

2000, Pentium III's -933 Mhz with 128

MB RAM and 256KB L2 cache. The

machines were running Redhat

Write Comparison with 2 GB file

30000

25000

20000

15000

1OOO0

5000

0

• DirectNFS

!lBExt 2

D Reiser
1

MNFS 2

•NFS3

2 GB 1 GB 500 MB

File Size

100 MB

35000

30000

25000

i 2000015000

3OO(3O

5000

0

ReWrite Performance

2G8 1C43 5OOMB 100MB

File Size

Figure 9: Rewrile Comparison

|DireclNFS

i I Ext2

O Reiser

! ONFS2

•N_S3

Figure 7: Write Comparison

utility that we used was Iozone [16].

We benchmarked the performance of

DirectNFS with varying file sizes and

record sizes. From the data, we observed

no significant variations in the

comparative figures. Hence, we have

included the performance figures of read,

write, reread and rewrite of a 2GB file

over ResierFS, DirectNFS, Ext2, NFS2

and NFS 3. Figure 7 is a the performance

graph of various file system read

throughputs for varying file sizes, with fixed record size of 256 KB. The rest of the

graphs - Figures 8, 9 and 10 - carry comparisons of write, re-read and re-write

operations. These figures indicate that DirectNFS performances are comparable to local

file systems.

52

The write performanceof DirectNFSshownin Figure8 is slightly worsethanExt2 and
ReiserFS.Re-readand re-writeweretestedsothat we couldmeasurethe effectsof the
Linux pagecache.
We have measuredthroughput for these
four operationswith varying file sizes Re-ReadComparison

starting from 100 MB up to 2GB and
35000

varying record sizes starting from 4 KB up

to 256 KB. Since the throughput figures _0oo0

we obtain did not vary significantly across 55ooo ,,O,_.c,NFS

these series, we reproduce data for 256KB I 20000 ,_,_

I 1_ Rei_r

record sizes only. The file sizes selected ,5ooo ,.,,Fs_

were suitable large, as we expect the ,oooo IINFS3

primary use of DirectNFS to be
50(10

multimedia applications (e.g. streaming
0

media servers), which use large files. 2_ ,_ 5ooMB ,ooM_

Note that NFS v2 and v3 throughput _,,.s,,.

figures that we measured were very close

to each other. Even though NFS 3 FigurelO:Re-ReadCompariso.

implements Asynchronous writes, NFS 2

clients under the Linux use write caching and by default run with synchronous writes

set to off. This hides the RPC latency of NFS from client applications. However, we

wanted to compare against real world performance and hence we tried to measure

against the fastest NFS performance possible.

From a glance at the throughputs for read and re-write tests, it appears that DirectNFS

performance comes close to matching the performance of both ReiserFS as well as ext2.

This can be accounted for by the metadata cache, which contains logical to physical

block translations, and improves the performance of DirectNFS, bringing it close to

ext2 and in some cases surpassing it (this is because the mapping function for the cache

is less expensive than the corresponding lookup operation in EXT2 or ReiserFS). We

also examined the effect of record size on performance. Figure 11 is a comparative

graph for the read operation for various file systems with fixed file size but with varying

record size. We did not observe any significant effect of record size on throughput of

any of the file systems under consideration. This is most likely due to the pre-fetching

in the VFS layer.

Comparison with varying record size

35000 _i_ ._;;_

30000 __/l

25000
o

20000

15000

10000

5000

0

4KB 64KB 256KB

• DirectNFS

• Ext 2

[] Reiser

[]NFS 2

INFS 3

record size

If we look closely at the performance

relative to NFS2 or NFS3, we see that

the performance improvements that are

achieved are significant, and are 2 to 3

times that of the Linux implementation

of NFS.

There are two measures of goodness for

a network file system, the first is the

throughput that each client can expect

from the file system, and the second is

the server scalability. DirectNFS

Figure I h Comparison with varying record size

53

addressesboth of them by increasingthe client throughputby a factor of 2 to 3 as

compared with competing NAS technologies like NFS, and increases the server

scalability significantly by reducing CPU utilization at the server.

A look at Figure 12 shows the relative CPU utilization of DirectNFS with NFS. The

tests that were carried out were sequential read, sequential reread, sequential write, and

sequential rewrite. Now, if we look at the NFS performance, we can conclude that NFS

(with a single client running Iozone tests on a file of size 1GB) requires a mean CPU
utilization of more

than 20%. Thus, the

scalability of the
server is limited to the

number of clients that

access the NFS server

at any point of time.

However, a look at the

DirectNFS numbers

for the same test

conditions shows a

radically different
scenario. One can see

that there is an initial

period where the CPU

•a 5o
40
30
2o

o 10

C_ 0
O3

CPU Utilizationof Serverwith I Client

0 (::3 0 0 C) 0 0 0 0 0 0
O0 03 (",l kO CO _ '_" _ 0 £0 O_

Time(seconds)

mNFS

• OirectNFS

o _,End0f
O3

OirectNFS

test

Figure 12: CPU utilization figures for a single client setup

utilization is roughly at an average of 10%, with a peak utilization of 20%. This is

because of aggressive pre-fetching of metadata by the DirectNFS client during the start

of file I/O. This accounts for the lower CPU utilization on the server when servicing a

DirectNFS client as compared to a NFS client.

Thus, it can be seen that the CPU utilization is significantly lower than NFS utilization

for the same one client setup that we used to measure NFS utilization. This indicates

that the DirectNFS metadata server may scale better than NFS servers.

Another key parameter by which scalability can be judged is the amount of network

traffic, expressed in terms of the number of RPCs that are required for a given operation

to take place. A measurement of the number of RPCs that are required to run the given

set of tests reveals that DirectNFS uses about a tenth of the total number that is required

for NFS. This can be explained by the fact that the number of metadata requests in

DirectNFS is drastically lower than NFS because of write allocation gathering and the

metadata pre-fetching performed by the client. This makes the data-metadata split

attractive, as this considerably reduces the traffic on the network and makes DirectNFS
a lot more scalable.

Overall, DirectNFS performs significantly better than NFS for all of the tests,

outperforming it by a factor of 2 to 3.

DirectNFS has been designed to counter network bottlenecks and 'store-and-forward'

overheads on NAS servers. So, the server CPU and I/O subsystem are no longer the

bottleneck. Introducing parallelism to storage access also means that the system will

scale as the available bandwidth for the storage network increases. Isolating storage

traffic on to a separate network allows for better utilization of the messaging network by

54

other network application protocols.
6. Future Work

1. Client Side Disk Caching: To further improve performance, the size of the

cache that holds the physical block translations should be made as large as

possible. To overcome the memory size limitations that we will come across

when dealing with large files and clients with multiple such workloads, the

block translations can be stored on disk. Thus, the limitation that currently exists

on the number of cacheable translations increases greatly, helping us to achieve

greater scalability.

2. Volume metadata caching: When the metadata server receives a

GETBLKLIST request, the DirectNFS filter uses the physical file system's

brnap operation to obtain the physical block numbers for the requested byte

range. Normally, the block buffer cache would cache the most frequently used

blocks in the storage system. Servers normally have a large amount of RAM,

and we feel that caching the entire metadata for the file volume is feasible. In

fact, for a file system formatted with 4KB-sized blocks, the cost of caching all

the physical block numbers of the volume is about 1MB per GB.

7. Related Work

There are some interesting existing systems in the distributed File Systems space.

Storage Tank [17] follows a similar approach for moving the data access path away

from the server. However, the design of Storage Tank lacks the portability of

DirectNFS. This is because DirectNFS uses a portable approach leveraging the ability

of a code generator like FiST to drastically reduce the porting of the file system to

multiple platforms. Many cluster file systems such as the Veritas Cluster File System

[18] are layered above and integrated with a proprietary physical file system. CMU's

Network Attached Secure Disks requires Intelligent Devices, which embed some file

system functionality in the Storage devices thus handling various issues like security,

scalability and object management. NASD addresses the security aspects of a SAN

based file system well, but the need for manufacturers to incorporate these changes into

disks highlights the problem associated with this approach.

Other similar work in the area includes Frangipani/Petal, Tivoli's SANergy [19] and

EMC's Celerra[20].

8. Conclusion

DirectNFS presents an optimum blend of NAS and SAN storage technologies. It uses

traditional distributed file system protocols such as NFS for meta-data access, with

extensions for direct data access using SANs. The end result is a distributed file system

that scales much better at high loads and has a data throughput that is a factor of 2 to 3

better than existing NAS protocols. In fact, this performance was comparable to that of

a local file system.

The portable design of DirectNFS makes it relatively simple to port to other operating

systems. In the future, we plan to port DirectNFS to other platforms such as HP-UX,

Windows2000 and FreeBSD and add CIFS compatibility.

55

Acknowledgments
We would like to take this opportunity to thank AnandamoyRoychowdhary,who
playedan importantrole in both the designas well as the implementationof Direct
NFS.
Wearegratefulto SunuEngineer,who helpedwith thedesign.
We would also like to thankAlban Kit Kupar War Lyndem,TanayTayal andGurbir
SinghDhaliwalwho helpedwith the implementation.

References

[1] Sun Microsystems,NFS: Network File SystemProtocol Specification,RFC

1094, 1988.

[2] P.J. Leach, A common Internet file system (CIFS/1.0) protocol, Technical

report, Network Working Group, Internet Engineering Task Force, December 1997.

[31 C.A. Thekkath, T. Mann, and E. K. Lee., Frangipani: A Scalable Distributed File

System., In Proceedings of the 16th ACM Symposium on Operating Systems

Principles, Oct. 1997.

[4] Kenneth W. Preslan, A 64-bit, Shared Disk File System for Linux, Proceedings

of the Sixteenth IEEE Mass Storage Systems Symposium held jointly with the

Seventh NASA Goddard Conference on Mass Storage Systems & Technologies,
1999

[5] Sun Microsystems., Open Network Computer: RPC Programming., The official

documentation for Sun RPC and XDR.IBM Inc.

[6] Chet Juszczak, Improving the Write Performance of an NFS Server (1994),

Proceedings of the USENIX Winter 1994 Technical Conference, 1994

[7] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff, and J.K. Ousterhout.

Measurements of a distributed file system., Proceedings of the Thirteenth A CM

Symposium on Operating Systems Principles. pages 198-212, 1991

[8] D.S.H. Rosenthal., Requirements for a "Stacking" Vnode/VFS Interface", UNIX

International, 1992

[9] G. Gibson et al., File Serving Scaling with Network-Attached Secure Disks,

Proceedings of the A CM Int. Conf. on Measurements and Modeling of Computer

Systems (SIGMETRICs '97), Seattle, WA, June 15-18, 1997.

[10] Y. Klein and E. Felstaine., Internet draft of iSCSI security protocol.

http.'//www, eng. tau. ac. il/-klein/ietf/ietf-kleiniscsi -security-O0. txt, July 2000

[11] ANSI, Fiber Channel Transmission Protocol (FC-1), ANSI draft standard

X3T9.3/90-023, REV 1.4, July 6, 1990.

[12] Erez Zadok, FIST: A System for Stackable File System Code Generation, PhD

thesis. Columbia University, May 2001.

[13] NameSys Inc., The ResierFS file system, http://www.resierfs.org, 2001

[14] B. Callaghan, B. Pawlowski and P. Staubach, NFS v3 Protocol Specification,

RFC 1813, June 1995.

[15] ANSI, SCSI-3 Fast-20 Parallel Interface, X3TlO/lO47D Working Group,
Revision 6.

56

[16] W. Norcutt, The IOZone file system benchmark, Available from

http://www.iozone.org/, April 2000

[17] Storage Tank Software, http://www.ibm.com/, 2000

[18] Veritas Inc. Veritas Cluster File System, http.//www, veritas.com, 2001

[19] Mercury Computer Systems Inc., High Speed Data Sharing among Multiple

Computer Platforms, http://www.sanergt_.com, 2001

[20] EMC Corporation, Celerra, http://www.emc.com, 2001

57

Building a Single Distributed File System from Many NFS Servers

-or-

The Poor-Man's Cluster Server

Dan Muntz

Hewlett-Packard Labs

1501 Page Mill Rd, Palo Alto CA 94304, USA

dmuntz@hpl.hp.com

Tel: +1-650-857-3561

Abstract

In this paper, we describe an architecture, NFS^2, for uniting several NFS servers under a single

namespace. This architecture has some interesting properties. First, the physical file systems that make

up an NFSA2 instance, i.e., the file systems on the individual NFS servers, may be heterogeneous. This,

combined with the way the NFS^2 namespace is constructed, allows files of different types (text, video,

etc.) to be served from file servers (potentially) optimized for each type. Second, NFS^2 storage is

strictly partitioned---each NFS server is solely responsible for allocating the resources under its control.

This eliminates resource contention and distributed lock management, commonly found in cluster file

systems. Third, because the system may be constructed with standard NFS servers, it can benefit from

existing high-availability solutions for individual nodes, and performance improves as NFS servers

improve. Last, but not least, the system is extremely easy to manage--new resources may be added to a

configuration by simply switching on a new server, which is then seamlessly integrated into the cluster.

An extended version of this architecture is the basis for a completed prototype in Linux [5].

1 Introduction

NFS [1] servers are widely used to provide file service on the Internet. However, adding new servers to

an existing namespace is management intensive, and in some ways inflexible. When a new server is

brought online, all clients requiring access to the new server must be updated to mount any new file

systems from the server, and access rights for the new file systems must be configured on the server.

Additionally, the new file systems are bound to sub-trees of each client's namespace.

The NFS^2 architecture allows standard NFS servers to be combined into a single, scalable file system.

Each NFS server is essentially treated as an object store. New servers added to an NFS^2 system

merely add more object storage--they are not bound to a particular location in the namespace. Clients

accessing the NFS^2 file system need not be aware when new NFS servers are added or removed from

the system. The system takes its name from the fact that NFS is being used "on top of" NFS--the NFS

protocol is being used to maintain object stores, and these object stores are combined into a single

distributed file system that is exported via the NFS protocol.

2 Architecture

Figure l shows one possible configuration for an NFS^2 file system.

59

Clienls

Potential

"Intermediate Servers"

i

Partition I_al volumes}

File and Namespace Data Partitions

Figure 1" An NFS^2 File System

Storage partitions, Pi, are exported to the other parts of the system via standard NFS servers, Si, also

called partition servers. For scalability of the individual partitions/servers, intermediate servers can be

introduced between the clients and servers. The intermediate servers accept NFS requests from the

clients, and transform these requests into one or more NFS requests to the partition servers.

The intermediate servers perform another important, and powerful, function. Each partition server is

used as an object store, but some entity must choose which partition is used for the creation of a new

object. In the trivial case, this placement policy could simply be round-robin. A slightly more complex

placement policy could choose a partition server based on resource balancing---choosing the partition

server with the most storage available to balance storage resources, or choosing the partition server

experiencing the least CPU load to do CPU load balancing. Even more complex placement policies are

possible. For example, if one of the partition servers is a slow, legacy machine, and there is some

knowledge of data access patterns, less-frequently-accessed data may be placed on the slow machine.

This concept could be extended to integrate tertiary storage into the NFS^2 file system.

We describe the architecture under the assumption that the intermediate server translation functionality

and placement policy are embedded in the partition servers and that clients issue requests directly to the

partition servers. An implementation based on this assumption would retain most of the benefits of the

complete system (possibly sacrificing some ability to scale with single-file "hot spots"), but would also

have some beneficial simplifications (e.g., reduced leasing overhead, fewer network hops, etc.).

3 Design Considerations

The most important concept behind the construction of the NFS^2 namespace is the cross-partition

reference. A directory residing in one partition may have children (files or directories) residing on
another partition.

60

Therearea coupleof alternativesfor implementingcross-partitionreferencesin NFS^2. Directoriesin
most on-diskfile systemsare implementedas"files," howeverthesedirectorieshaveimplementation-
specific data and interfaces. If we are allowed to modify the NFS servers,directories can be
implementedusingregularfiles in theunderlyingphysicalfile system.While this addssomeoverhead
when comparedto usingthe existingdirectory structuresof the underlying file system,therearealso
benefits. Directory files mayusea varietyof datastructures(e.g.,hashtables,b-trees,etc.),and can
surpasstheperformanceof thetypical linear list structureusedin manysystems[5]. More importantly
for our purposes,with directory files we can extend directory entries to support cross-partition

references, independently of the physical file systems. To achieve the goal of using unmodified NFS

servers, symbolic links can be used to construct cross-partition references. We first describe the system

in terms of directory files (for clarity), and follow this with a description of how the same functionality

can be achieved with symbolic links. Fault tolerance and correctness for cross-partition references,

without using distributed lock management (DLM), are addressed in another paper [7].

Another alternative is to store directories separately from files. Standard NFS servers are used to store

files while separate servers are used for the namespace (either using directory files, or an alternative

mechanism). Cross-partition references enable this separation of the namespace from the files. Servers

for the namespace could be NFS servers modified to support directory files, a database, or some other
construct.

The NFSA2 file system consists of user files and directory files. Both types of files exist as standard

files in their respective partitions--a user file, /usr/dict/words might be represented as the file

/abe/123 on partition P3, while the directory /usr/dict might be a file /def/xxx (containing

directory entries) on partition P4. An NFS^2 director>, entry associates the user's notion of a file or

directory name with the system's name for the file/directory, the partition where the file/directory is

located, and any other relevant information. For example, some entries in /def/xxx could be

represented as:

.:/def/xxx:P4

..:/yyy:P6

words:/abc/123:P3

File handles passed to the client contain some representation of the system's name for the object (file or

directory) and the partition where the object resides. This information is opaque to the client, but may

be interpreted by the load balancer (LB) to direct requests to the correct partition server. Alternatively,

the partition servers could be made the sole entities responsible for interpreting file handle information.

A request could be sent to an arbitrary partition server that interprets the file handle and may then have

to forward the request one "hop" (O(1)) to the server responsible for the object.

In the initial state, a well-known root partition server (say, P_) contains a file, e.g., "/root", which

corresponds to the user's view of the root of the NFS^2 distributed file system. The client mounts the

file system by obtaining a file handle for the /root file as a special case of the lookup RPC.

Let us consider how some operations are handled in this file system. A mkdir request from a client

will contain a file handle for the parent directory (pfh) and a name for the new directory (dname). A

switch function is used by LB to direct the request to the partition server (Px) where the new directory

61

will reside.Theswitch function implementsanarbitrarypolicy for wherenew file systemobjectsare
created(e.g.,all video files might beplacedon a "video server,"or the switch functionmaychosethe
serverwith the mostavailablecapacity). Pxcreatesa new file representingdnamethat hasthe name
dname'in the physical file systemservedby Px. P×then issuesa requestto the partition server
responsiblefor the parentdirectory,Py(extractedfrom pfh), to adda directoryentry:dname:dname':Px
to the parentdirectory file (containedin pfh). If an entry for dnamealreadyexists,the operationis
abortedand dnameis removedfrom Px. Otherwise,the new directory entry is addedto the parent
directoryfile andtheoperationcompletes.

ThecommunicationbetweenPxandPy could be implemented using the standard NFS and lock manager

protocols. Px first locks the parent directory file, and checks for the existence of dname. If no entry for

dname exists, it can issue an NFS write request to add the entry to the parent directory file. The

directory file is subsequently unlocked. Alternatively, this communication could take place via a simple

supplementary protocol that would allow the locking to be more efficient--a single RPC is sent to Py,

which then uses local file locking for the existence checking and update, and returns the completion

status.

File creation is essentially identical to mkdi r.

The read and wr i t e operations are trivial (referring to the definitions from Figure 1):

write(fh, data, offset, length):

C_ sends the request to LB.

LB looks into fin and directs the request to the appropriate Sj.

Sj issues a local write call to the file specified in fh.

Read is similar.

To construct cross-partition references with symbolic links, we can build an NFSA2 cluster as a proof-

of-concept as follows. First, each partition is assigned a name (assume Pi, as in Figure 1). The NFS

servers then mount all partitions into their local namespace at locations/P 1,/P2, etc. using the standard

mount protocol. Now, a cross-partition reference is created by making a symbolic link that references

the physical file through one of these mount points.

For the example:

words:/abc/123:P3

An underlying file, /abc/123, contains the data for the file, and resides on partition P3. The

namespace entry words is a symbolic link in its parent directory with the link contents:

/p3/abc/12 3. It is important to note that we are talking about systems on the scale of a cluster file

system, so the cross-mounting does not involve a "huge" number of servers. An extension to this work

[5] looks at expanding the architecture to a global scale.

62

4 Future Work

There are several areas requiring further investigation. The performance of the architecture in its

various possible incarnations (the symbolic link version, the directory file version, and others) must be

studied.

We also want to investigate the potential uses and performance implications of directory files.

Directory files were conceived for the NFS^2 architecture to address the problem of providing a single

directory structure over diverse underlying file systems, and the need for an easily extensible directory

structure. Such benefits may be useful for other file system research. Also, because directory files

allow the directory structure to be flexible, they can be used to investigate alternative data structures for

directories, alternative naming schemes, new access control mechanisms, and new types of information

that might be associated with files.

Due to the structure of cross-partition references, object-level migration should be relatively straight-

forward in NFS^2. Migration and replication are two more areas requiring further research.

5 Related work

There has been a significant amount of research and product development in the area of cluster file

systems [2,4,8]. Most are based on principles established in the VAXclusters [2] design. These

systems use distributed lock management to control access to shared resources, which can restrict their

scalability. NFSA2 partitions resources to eliminate DLM [5,7].

Frangipani proposed one of the most scalable DLM solutions in the literature [8]. System resources are

partitioned into logical volumes [3] and there is one DI_M server dedicated to each volume. This

requires using two levels of virtualization: virtual disk and file system. NFS^2 resembles Frangipani in

its partitioning of the storage resources for improving contention control. However, NFS^2 uses one

level of virtualization allowing decisions for resource utilization and file placement to be made at the

file service level. Also, cluster file systems, including Frangipani, depend on their own, proprietary

physical file system. NFS^2 is a protocol-level service and can leverage diverse file systems for optimal

content placement and delivery. Nevertheless, NFS^2 is complementary to cluster file systems--a

partition can be implemented as a cluster file system and can be integrated into a broader file space.

Slice [6] is a system that also uses a partitioning approach, similar to NFS^2. Slice's file placement

policies (small versus large files and a deterministic distribution within each class of files) are

implemented in _tproxies---modules that forward client operations to the right partition, operating at the

IP layer. To make placement decisions, _tproxies have to maintain a view of the server membership in

the system. In case of reconfiguration, the new membership information is diffused among the (possibly

thousands of) _tproxies in a lazy fashion. As a result, resource reconfiguration in Slice is coarse-grained;

also, file allocation is static for the duration of an object's life. In comparison, NFS^2 can extend the

traditional file system namespace metadata to achieve highly flexible and dynamic file placement and

resource reconfiguration. However, this requires extensions (even if minor) to the client access protocol.

Slice's _proxy idea could be used to transparently intercept client-service communication and redirect it

to the appropriate partition server. In that case, p,proxies will not need to maintain distribution tables;

instead, they will interpret the contents of the (opaque to the client) file handles to retrieve the location

of the server for each client request.

63

6 Conclusions

NFS^2 provides a mechanism for uniting NFS servers under a single namespace. It simplifies

management of multiple NFS servers by providing access to all servers through a single namespace (no

need for multiple client mount points), and by providing a transparent mechanism for the addition of

new servers as the system grows.

This system avoids distributed lock management, which has been a limiting factor in the scalability of

cluster file systems. NFS^2 supports heterogeneous physical file systems within the single namespace,

whereas other systems have relied on their own proprietary physical file systems. Support for arbitrary

placement policies to place files on certain servers allows a great deal of flexibility, including

placement of files on servers optimized for a given file's content type, load balancing, storage
balancing, and others.

7 References

1. Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B., Design and Implementation

of the Sun Network Filesystem, in Proc. of the Summer USENIX Technical Conference, Portland,
OR, USA, June 1985.

2. Kronenberg, N., H. Levy, and W. Stecker, VAXClusters: A closely-coupled distributed system.

ACM Tansactions on Computer Systems, 1986, 4(2): pp. 130-146.

3. Lee, E. and C. Thekkath. Petal." Distributed VirtualDisks. InASPLOS VII, MA, USA, 1996.

4. Veritas Cluster File System (CFS), 2000, Veritas Corp., Mountain View, California.
http://www.veritas.com.

5. C. Karamanolis, M. Mahalingam, L. Liu, D. Muntz and Z. Zheng. An Architecture for Scalable

and Manageable File Services. HP Labs Technical Report No. HPL-2001-173 (7/12/2001).

6. Anderson, D., Chase, J., and Vadhat, A., Interposed Request Routing for Scalable Network

Storage, in Proc. of the USENIX OSDI, San Diego, CA, USA, October, 2000.

7. Zhang, Z. and Karamanolis, C., Designing a Robust Namespace for Distributed File Services, in

Proc. of the 20th Symposium on Reliable Distributed Systems. New Orleans, USA. IEEE

Computer Society, October 28-31, 2001.

8. Thekkath, C., T. Mann, and E. Lee. Frangipani: A Scalable Distributed File System. In 16th

ACM Symposium on Operating Systems Principles (SOSP), Saint-Malo, France, 1997.

64

High Performance RAIT

James Hughes, Charles Milligan, Jacques Debiez

Storage Technology Coq_oration

1 Storage Tek Drive
Louisville CO 80028-2129 USA

james_hughes, charles_milligan, jacques_debiez@ storagetek.com
Tel: +1-763-424-1676

FAX: + 1-763-424-1776

Abstract

The ability to move 10s of TeraBytes of data in reasonable amounts of time are

critical to many mass storage applications. This paper examines the issues of high

performance, high reliability tape storage systems, and presents the results of a 2-year

ASCI Path Forward program to be able to reliably move IGB/s to an archive that can

last 20 years.

This paper will cover the requirements, approach, hardware, application software,

interface descriptions, performance, measured reliability and predicted reliability. This

paper will also touch on future directions for this research.

The current research allows systems to sustain 80MB/s of incompressible data per

Fibre Channel interface which is striped out to 8 or more drives. A RAIT system looks

to the application as if it were a single tape drive from both mount and data transfer.

Striping 12 RAIT systems together will provide nearly 1GB/s to tape.

The reliability is provided by a method of adding parity tapes to the data stripes.

For example, adding 2 parity tapes to an 8-stripe group will allow any 2 of the 10

tapes to be lost or damaged without loss of information. An interesting result of this

research is that the reliability of RAIT with 8 stripes and 2 parities exceeds that of

mirrored tapes even though 8 mirrored tapes requires 16 actual tapes and 8 data tapes

plus 2 parity tapes only requires 10 actual tapes.

Keywords: RA1T, High Performance, Archive

1 Introduction

This paper describes the RAIT system as designed for the US DoE as a part of the ASCI

program. This system is designed to facilitate the long term archive of large quantities of

information in the face of potential media failures.

The requirements of the project are three fold,

• Ensure the reliability of large archives

65

• Compatible with the existing applications

• Transfer the data at a high data rate

The reliability of tape varies from manufacturer to manufacturer. At STK, our high

reliability 9840A tape devices have shown to have an average reliability of one permanent

read error every 20TB of data read. While this is significantly better than some other

vendors, this error probability is not zero, and can never be.

A probability of a read every every 20TB with a 20GB cartridge, means that a cartridge

can be read 1000 times between errors. In general, this is not a significantly high number,

but when combined with large multi-volume datasets (files that span and/or stripe out to

many cartridges), the effects are multiplied.

For example, a 3 TB backup to 9840A with 1.5:1 compression will require 100 car-

tridges with a native capacity of 20 GB. Simply because of the number of cartridges in-

volved, there is a 1 in 10 chance that there will be a permanent error in writing or reading

the data. Since any error destroys the backup or restore operation, the results are catas-

trophic to the data.

2 Other Methods

For completeness, we mention other RAIT systems and documentation.

First, although somewhat dated, the Storage FAQ [1] discusses the general issues of

RAIT and several vendor offerings. For commercial hardware offerings we find Ultera

[10]. For software offering we find Computer Associates [9].

In addition, many backup companies offer striping solutions, these include IBM's HPSS,

Veritas and Legato [8, 11, 12]. These striping solutions can provide the performance that a

RAIT system provides, but does not add additional data protection. When using a striping

solution care needs to be takes because striping multiplies the probability of problems. Our

system focuses on solving the robustness problem of stripes tape making the result more

reliable than a single tape drive.

This paper is focused on the data protection and transparency of a full virtualized RAIT

system. We use the term "full virtualized RAIT" to mean a system that completely hides

all aspects of the RAIT system from the application. The application only sees a single

tape volume with a single volume serial number. The application issues a single ACSLS

tape mount and transfers data to a single tape drive [4, 2, 3].

3 Approach

If we compare RAID to RAIT, they are very similar except that tape is a removable media.

We have accomplished RAIT by adding parity (as in RAID), but we have extended this

to virtualize the removable media and to provide additional redundancy beyond the single

parity of RAID.

The approach that Storage Technology took for the ASCI RAIT project is to virtualize

the entire tape operation. By "virtualize" we suggest that the application's view of the

operation need not be in full agreement with the reality of the operation.

66

In this system, the application thinks that it is mounting, writing or reading a single

volume from a library. In reality, the "virtual volume" does not exist and another group

of real cartridges contain the actual information and additional redundancy which contains

what the customer actually gets when the data is read.

The reality is that the single virtual tape mount may have resulted in up to 10 or more

real tape mounts, and the data that was transfered to the single virtual drive will have parity

added and spread to all the real drives.

In RAID-5, there is a single parity drive. Many customers have experienced multiple

failures on a single RAID stripe. In RAIT, multiple parities are created so that if there are

any multiple failures (up to the number of parity tapes) the data will be intact.

Just like RAID where the application sees no difference between a RAIT controller

and a non-RAID controller, the application that is requesting the RAIT tape mount and

writing or reading the data has no knowledge of the reality. In general this will allow any

application that reads or writes tapes to be able to write RAIT.

3.1 Hardware

All hardware RAIT Systems are designed to interpose a device between the host and the

physical tape library and drives. The device presents a virtual image of the virtual tape

and the other deals with "reality". The STK device has 2 basic parts; a mount proxy and a

parity generation/checking data path.

3.1.1 RAIT Proxy

The virtual-to-real tape mount operations are accomplished by the RAIT proxy. This is the

device that understands the mapping between the virtual volumes and the real volumes. It

also manages the creating of virtual tape pools, reconstruction pools, and control of data

path.

The RAIT proxy has a database that contains the persistent information necessary to

associate the mapping of virtual volumes to the real physical cartridges. This is critical so

that applications that use the virtual volumes are hidden from this fact. This database is

mirrored to multiple locations and backed up. In addition, to aid in the transportation and

introduction of RAIT groups into other RAIT systems, and to act as a final fall-back to

ensure that this information can not be lost, this information is also written onto the tapes
as meta-data which is hidden from the user.

From the application point of view, it requests a mount from what looks like a standard

STK ACSLS mount service. This single volume that the application requested is translated

by the RAIT proxy to real volumes, and these real volumes are mounted.

This is a valuable feature in that it allows applications that only know about "normal"

tape volumes to take advantage of RAIT. This completely parallels RAID where the client

hosts have no knowledge that the device is RAID.

Once the mounts are complete, the RAIT proxy initializes the data paths with infor-

mation on where the tapes are mounted, the number of data stripes and the number parity

stripes.

67

3.1.2 Data Path

Figure 1: Striping data

The data path stripes the data and creates or checks the multiple parity stripes. Figure

1 graphically shows the representation of how the data is striped and parity calculated.

In this figure, the data is described as a block of J words and is striped into ! horizontal

groups. An additional prefix and suffix are added before and after and then the parities

are added above and below. In this case there are 5 parities, they are -2, -1, 0, 1 and 2.

There are no inherent limit to the number of parities. These parities are described by their

row/column slope.

The prefix and suffix contain zeros so that the end-cases of parities which extend be-

yond the start or end of the user data will have deterministic results. These zeros do not

really exist and are not stored on the media, but are included here to illustrate the parity
construction.

/9o calculation is simply the vertical line through the horizontal data stripes. This XOR

of the data is stored in the third from the bottom parity stripe. The other parities go through

the data and then are stored in their respective stripes.

You will also notice that the parities (other than/9o) are longer than the data. This data

is necessary to "bootstrap" the correction function, to keep the blocks independent. This

additional data is stored on the tapes. This does not represent a significant lengthening of

the parity data. Pz has an additional length of [xJI words. If the blocksize of the tape is 1

MB using 32 bit words on an 8 way stripe, this will result in a 0.003% increase in the length

of the parity blocks over the data blocks. Since tape is a variable length block device, this

is not a significant factor.

An alternative (and a formal) description; a block of application data that is sent from

the host is divided into I stripes. Those stripes are sent to the parity hardware to create

68

multiple linearlyindependentparity stripes.
Theparitygenerationis accomplishedby thecreationof verticalandvariouscrosspar-

ities. Eachof theparitiesPk are taken in order from a list k c < 0, 1, -1, 2, -2, 3, -3... >.

The data is described as a word Di,j where i is the stripe number and j is the offset.

I

Pk,j : (_ Di,j ik
i=1

Where if Dx,y is out of bounds, it is assumed to be 0.

3.1.3 Variable Configuration

The configuration of the RAIT volume is selectable. The volumes can be simply defined

as N+P where N is the number of data stripes and P is the number of parities.

An optional, and more exact description can be N+(P1,P2) where N is the number

of data stripes and P I and P2 describe the number of parities when failures during write

operations are allowed. In this case, P1 is the total number of parities desired and P2 is the

minimum number of parities that must be present for the write to be successful.

A simple example: 6+(2,1) will mean that a write of a volume starts out with 8 devices

and that during the creation, one can fail and the overall write will be signaled to the host

as being good. P2=l specifies that if there is not at least 1 parities written at all times, then

the host will be notified that the write operation has failed.

3.1.4 End of Tape Operations

As data is written, the first real tape device that reaches end-of-tape signals an end-of-tape

to the application that this virtual volume is now full. Many years ago, hosts needed to

know how many bytes can be written on a tape device. Modem host software assumes that

data sensitive compression is occurring on the tape device and no longer needs to know how

long a tape is anymore. Programs today simply write data until the tape says "enough".

Before the data is written out to the drives, it needs to be rotated across the drives

because the parities are not as compressible as the user data. Parities are less compress-

ible because when two compressible pieces of data are XORed together, the result is less

compressible.

Care must also be taken to ensure that the parity stripes (less compressible) are not

written to separate tapes from the (more compressible) user data. Failure to do so will

result in the parity tapes always getting to end-of-tape first thus wasting the compression

on the data tapes. This is solved by rotating the data and parity stripes over the complete

N+P group.

3.1.5 Reconstruction

To eliminate as many errors as possible, we leave all the drive's error recovery on at all

times. This means that all the data integrity features of the device are left enabled. On 9840
this means that Read After Write and full ECC are enabled.

69

If datacannot be reador writtencorrectlythedrive notifiestheRAIT controller.All
retriesareusedto try to makesurethatthis is notatransienterror.

Oneimportantsideeffectis that, if thedatashowsupandthedrivesaystherewasno
error,it canbeassumedto becorrect.Conversely,if thereis anerroron read,wecanjust
assumethatthedatawill neverbereadableandtreatthatblock asmissing.Sinceweknow
whichblock is missing,thenanyoneof theparitiescanbeusedto correctthatstripe.

For instance,if adatastripeis missingandP0isavailable,thesimpleparityof thevalid
datastripesandtheparity is the missing data stripe.

Multiple parities are more complicated. For example, if there are 3 missing data stripes

and three parities (P0, P1 and P-l) we perform the recovery as follows. Starting with the

"correction line" as the first word of each stripe we notice that the top missing stripe can be

corrected with the parity stripe going from left bottom to right top. This is because all the

words to the left are good (because the prefix is known to be zero) and all words above the

top missing stripe are (by definition) not missing. When we are at this case, we can correct

the first word of the top missing stripe. We then correct the bottom missing word in the

same manner with the other diagonal parity. At this time, there is one remaining missing

word and one remaining parity (P0). We can simply use P0 to correct the remaining word.

We can them move the correction line to the right by one word.

Subsequent words within this block can be corrected the same way because as we iterate

this from left to right, all words to the left of the correction line have been corrected. This

simple scheme can be enhanced to any number of errors as long as there are enough parities.

When there are more than 3 errors, then the correction line is no longer straight.

These errors correction techniques are discussed in [6] as a "burst erasure channel". A

burst erasure is defined as an event where, if there is an error detected, an entire burst (block

in our case) is erased (in our case simply not returned from the device). To recover from

an error, we simply use the parity to recover the known bad data stripe. IBM introduced

the concept of "Crossed Parity"[7], and patents for further extensions to this have been

proposed by the authors.

3.1.6 Reconstruction performance

Since this is a burst erasure channel, if all bursts (stripes) arrive without the drive saying

there is an error, then we can assume there are no errors and simply reconstruct the user

data block without employing the parity hardware at all.

In the case where a single stripe is missing, the parity of everything but the missing

stripe is the missing stripe. We can employ the parity hardware to create the syndrome in

the same time as we took to create the parity in the first place. This allows us to correct a

single missing stripe with no performance penalty.

When multiple errors occur, we can use the parity hardware to create partial syndrome

for each word and then do the word by word iteration in software.

3.1.7 Additional Data Integrity checks

Provided that all the parity is not needed to correct missing data stripes, the controller can

do additional data integrity checks of the data.

7O

3.2 Application software

In general, the application software does not need to understand the operation of the virtual

tape devices. The initial customer uses HPSS and the testing of HPSS is accomplished

without change to HPSS. Other software such as Veritas or Legato Backup software oper-

ates the same whether the tape device is RAIT (virtual) or real.

The one exception is in the area of job scheduling. If the job scheduling system manages

the tape drive allocation to ensure that there are adequate resources, this needs to take

into consideration that certain tape mounts will not require a single drive, but may require

multiple drives. This has been added as a feature to HPSS.

3.3 Performance

The performance of the RAIT system is limited by the speed of the data channel, parity

hardware and tape devices themselves. At this time, a 100MBytes/s Fibre Channel is used

to connect to the host devices. Fibre Channel can be reliably utilized at 80% of capacity or

80MBytes/s. The parity generator hardware operates at more than 100MBytes/s so that it

is not a bottleneck. The devices used are STK 9940 tape devices that have a raw speed of

9MB/s. This number is increased by the compression factor. If the user data is compressible

2:1, then the performance of the tape device will be l 8MBytes/s.

A 5+2 RAIT system with 9940s operating with 1.8:1 compression can sustain 80MBytes/s

as a single virtual tape device being striped out to 7 physical tape drives.

3.4 Reliability

It has been shown that STK 9840s have a read error about every 20TB of data with a

cartridge size of 20GB. Since this is 1000 reads of a single cartridge, a very simple model

is to assume a probability of error of e = 10 -3 per tape operation and unrelated failures [5].

If we assume that a tape operation is a mount and unmount of a tape regardless of the

amount of data transfer, then this will be a conservative estimate and the actual reliability

should be significantly better than this.

The probability of at least one error for any group of tapes (stripes or just long volumes)

is the number of volumes (v) times the error ev. A 100-tape volume has an error probability

of 10 -1.

A single RAIT virtual tape volume (r) with one parity per 6 volumes (6+1) will only

fail if 2 tapes fail. A simple model of this is the probability of 1 of 6 failing and then 1 of 5

remaining fail or r(:_+a= 6e5e or r6+l = 3 × 10 -5.

A (6+2) system will only fail if 3 tapes fail. This is the probability of 1 or 7, 1 of 6 and

then 1 of 5 remaining fail or r6+1 = 7e6e5e or r6+2 :--- 2.1 × 10 -7.

3.4.1 Striped RAIT Systems

Since it is still possible for the application to stripe the data, the application can be used to

stripe the data over multiple independent RAIT systems. For instance, 4 RAIT groups at

80MB/s will sustain 320MB/s or more than 1TB/hour.

71

A striped RAIT system S-wide will have an overall reliability of Sr. In the case of

13 (6+2) RAIT units wide the probability of failure is Sr or 2.7 x 10 -6. This shows that

the reliability of a 1GigaByte/s striped RAIT has an error probability of less than two in a

million probability of data loss due to unrelated failures.

3.4.2 Other Failure Modes

The analysis in this paper focuses on unrelated drive, and media failures. The performance

of the system in the face of related failures at the controller level is not considered. Gen-

erally, failures at the controller level do not effect the stored data, which can be read or

written once the controller is repaired.

3.5 Future directions

Storage Technology Corporation is in the process of creating a Commercial Off The Shelf

device for worldwide availability. STK is also creating a "mirroring" capability so that

tapes can be created simultaneously at multiple locations with the same kind of single

virtual device image as RAIT. The performance of the system is also expected to increase

as customer systems and tape devices become faster.

3.6 Conclusion

This paper has discussed the method of creating RAIT. The primary goal of reliability is ac-

complished by adding parity information to the virtual volumes. Performance is increased

by striping the data. Further performance can be achieved by striping RAIT systems. In

the future this capability will be commercially available.

References

[1] R. Van Meter. comp.arch.storage FAQ

http://alumni.caltech.edu/-rdv/comp-arch-storage/FAQ-l.html"

[2] M. Fisher. Redundant Array of Independent Tape: RAIT, THIC, October, 2000,
Bethesda MD.

http://www.thic.org/Agenda_1000.html

[3] G. Sobol, SAN Enabled RAIT/RAIL, Computing in High Energy Physics, CHEP'00

Padova Italy, Feburary, 2000.

http://chep2000.pd.infn.it/abs/absx:016.htm

[4]

[5]

J Hughes, C. Milligan, J. Debiez. High Performance RAIT, Computing in High Energy

Physics, CHEP'01 Beijing, China, September, 2001.

http://www.ihep.ac.cn/-chep01/paper/4-004.pdf

R. Defouw, C. Milligan, and T. Noland, The Level of Data Protection in Redundant

Tape Arrays, Storage Technology Internal Correspondence, May, 2000

72

[6] W. W. Peterson and E. J. We|don, Error Correcting Codes, 1961, John Wiley & Sons

Publishers.

[7] A. M. Patel, Adaptive cross parity code for a high density magnetic tape subsystem,

IBM J. Res. Develop., vol. 29, pp.546-562, 1985.

[8] R. W. Watson and R. A. Coyne, The parallel I/0 architecture of the high-performance

storage system (HPSS), Proceedings of the Fourteenth IEEE Symposium on Mass

Storage Systems, IEEE Computer Society Press, September 1995, pp. 27-44.

[9] Computer Associates,

http://www.cai.com/products/san/saniti_strategy.htm

[10] Ultera Corporation,

http://www.ultera.com

[11] Veritas Corporation,

http://www.veritas.com

[12] Legato Corporation,

http://www.legato.com

73

Conceptual Study of Intelligent Data Archives of the Future

H. K. Ramapriyan, Steve Kempler, Chris Lynnes, Gail McConaughy, Ken

McDonald, Richard Kiang

NASA Goddard Space Flight Center
Greenbelt MD 20771

Sherri Calvo, Robert Harberts, Larry Roelofs

Global Science and Technology, Inc.

Donglian Sun

George Mason University

Ramapriyan@gsfc.nasa.gov
Tel: +1-301-614-5356

Fax: +1-301-614-5267

Abstract

A conceptual architecture study is under way to address the problem of getting the most

scientific value from the large volumes of Earth and space science data that NASA

expects to accumulate in the future. This involves efficient storage and access, but goes

beyond that to facilitate intelligent data understanding and utilization through modeling

realistic virtual entities with predictive capabilities. The objective of the study is to

formulate ideas and concepts and to provide recommendations that lead to prototyping

and implementation in the period from 2010 to 2(120. The approach consists of the

definition of future scenarios and needs for data usage in applications (in consultation

with scientific and applications users), projection of advances in technologies, and an

abstraction of an intelligent archive architecture. Strategic evolution is considered in

various areas such as storage, data, information and knowledge management, data ingest

and mining, user interfaces, and advances in intelligent data understanding algorithms.

1. Introduction

NASA's collections of Earth science data have more than quadrupled in volume since the

launch of the Terra satellite in December 1999. At the end of September 2001, NASA's

Earth science archives contained over 1,000 terabytes of data and are currently growing

at the rate of about 2.8 terabytes per day. Other agencies (e.g., NOAA and USGS) also

have large and growing archives of Earth science data. The volumes of Earth science

data held by NASA, NOAA and USGS are expected to exceed 18 Petabytes by 2010.

Significant increases are expected in the data volumes in space science as well. For

example, planned synoptic sky surveys in astronomy could produce 10 Petabytes data per

year.

75

In addition to the largedata volumes,thereare multiple challengesin managingand
utilizing them:

• Data acquisition and accumulationratestend to outpacethe ability to accessand
analyzethem.

• Thevariety of dataimpliesaheterogeneousanddistributedsetof dataprovidersthat
serveadiverse,distributedcommunityof users.

• Human-basedmanipulationof vastquantitiesof archiveddatafor discoverypurposes
is intellectuallyoverwhelmingandcertainlycostprohibitive.

• Thetypesof dataaccessandusagein future yearsaredifficult to anticipateandwill
vary dependingon the particularresearchor applicationenvironment,its supporting
datasources,andits heritagesysteminfrastructure.

Increasedhardwarecapabilitiespartially mitigate the dataaccessproblem. However,
adding "intelligence" to the data managementand utilization processis essentialto
automatingtheend-to-enddatalifecycle in orderto reducetheburdenondataproducers
and archivistsandprovide the greatestvalueto the nationfor the datacollected.Thus,
Intelligent DataArchiveshereareviewednot just asa setof permanentrepositoriesof
data,but alsoasa suiteof servicesthat facilitatetheuseof dataandderivinginformation
andknowledgefrom them. Therefore"intelligence", in variousembeddedroles,means
the computationaltransformationof bits into information and knowledge(processing
sensorydata into models), the ability to automaticallyact appropriatelyto complex
dynamicconditions(operationsautomation),andability to facilitate humaninteractions
with digital resources(semanticmanagement).

A conceptualarchitecturestudyis underway to addresstheproblemof efficientaccessto
andeffectiveutilization of the largevolumesof datathatNASA expectsto accumulatein
the future. The study is sponsoredby NASA's Intelligent SystemsProgram,and
specificallythe Intelligent DataUnderstandingtechnicalareawithin the program. The
intentionof the study is to developideasandconceptsandto provide recommendations
that leadto prototypingandimplementationin futureyears.As such,it is notconstrained
by theneedfor operationalimplementationin thenearfuture(e.g.,two to five years).

The approachto this studyconsistsof the characterizationof futurescenariosandneeds
for datausagein applications(in consultationwith scientific and applicationsusers),
projectionof evolutionary/revolutionaryadvancesin technologies,and anabstractionof
an intelligent archive architecture. Thesestepswill lead to a strategy toward the
formulation and developmentof conceptualarchitecturesfor intelligent archives. The
analysisis usedto identify what kinds of intelligent processesareboth desirableand
feasible,and determinewheretheir applicationmight mosteffectivelydrive down costs
and enablenew applicationsand research,given anticipatedadvancesin technology.
Strategicevolutionis consideredin variousareassuchasstorage,data,informationand
knowledge management,data ingest and mining, user interfaces,and advancesin
intelligentdataunderstandingalgorithms.

76

The following section provides a brief discussion of the preliminary abstracted
architectureobtainedusingthis approach.Section3 presentsa descriptionof scenarios
anduserneeds. Section4 coversprojectionsof evolutionaryandrevolutionarychanges
in technology. Section5 providesa setof recommendationsin the form of a road map
leading towards intelligent archives supporting intelligent data understandingand
utilization.

2. Abstracted Architecture

The abstracted architecture represented here is defined without regard to distributed or

centralized nature of implementation and is considered purely from the point of view of

the functions that need to exist to support the types of usage scenarios analyzed in section

3. It is possible that with a broader set of scenarios, we will need to identify additional
functions in a later version of this abstraction. The fimctions of an intelligent archive are

more stable than the architectures and technologies used to implement them. By

abstracting elements and processes into functional elements, we can explore application

strategies of technologies and system resources for future intelligent archives.

However, it is first useful to provide our definitions for data, information and

knowledge, as these entities are key to the abstraction of the architecture. These are not

general definitions, but rather somewhat specific to the domain of scientific research.

• Data: output from a sensor, with little or no interpretation applied.

• Information: a summarization, abstraction or transformation of data into a more

readily interpretable form.

• Knowledge: a summarization, abstraction or transformation of information that

increases our understanding of the physical world.

Future intelligent archive architectures (see Figure l) manage these entities with such

functional elements as:

• Models and Intelligent Algorithms
Consist of models of sensors, resources, data, information, knowledge, and

application domain entities (e.g., farm)
- Include models that exist at multiple levels, ranging from detailed sensor models

to models of an entire application domain (e.g., global models in the case of Earth

science)

- Support human understanding of the objects and processes that make up a virtual

digital entity and allow users to update the knowledge about the domain as new

discoveries are made

• Flow and Feedback Loops

- Control performance of all other functional elements

- Include mechanisms that construct, organize, store, update, manage, and provide

essential operational services

- Support self-optimizing operations

• Virtual entity

Consists of a representation of the data, knowledge, and processes involved in an

application domain

77

Providesa contextfor ingesting, organizing, and managing data and information

for the real world entity it represents

Allows interrogation of past, present, and projected future events, as well as

"what if" analyses

Intelligent information and knowledge extraction

Facilitates the transformation of data into information and useful knowledge

Automates mechanisms that extract meaning from data and therefore leverage the

value of all data in the process

Supported by models in the knowledge base, which provide a basis for

understanding the data

Intelligent data production, management and archiving

- Consists of production, persistence, and active management of valued massive
data assets

- Automates efficient data management mechanisms supporting knowledge-

building enterprises in the face of an overwhelming "tidal wave" of data

- Must dynamically manage high volume inputs from a diversity of observational

sensors, converting them into quality usable data products

- Manages storage close to sensors such that data can be processed locally and

passed on to the virtual entity as needed

Intelligent sensors

- Are responsible for observations and measurements taken from nature and are the

raw ingredients for data

- Operate from various platforms such as satellites, aircraft, balloons, and in situ
constructs

- Have capabilities for performing autonomous functions and also interact with

other sensor systems and external functional elements

Include storage, management and processing resources that are part of the overall
archive

Are modeled in the context of the knowledge base and can support collaborative

operation by supplying processing and storage resources when they are not

needed locally

Are expected to become an integral part of an archive as the architecture becomes
more distributed. Here the archive would control sensor data collection based on

data needs and would use sensor resources to perform its functions

78

Knowledge Enterprise

Applications

Q.

Knowledge-to- system/process intelligence O

Data-to-Information i
_" _ =%_b LI_

_i _ _ ,,
Observation-to-Data , O

i:_;i_-_;__ _ _-_ _, I LI_

c, . :, _.%_:x

Figure 1: Abstracted Architecture for Intelligent Archives

Using this abstracted architecture to construct an intelligent data system would require a

number of design decisions regarding how these elements and entities are represented,

such as whether data are represented as bit streams, files, database records, or some other

entity. Other decision points concern the relationships among entities, infrastructure to

support and connect the various elements, and various optimization schemes. There is

much ongoing development in the area of data system intelligence today, such as grid

computing, distributed data mining, mobile agents etc. However, because one of the

main goals of the abstracted architecture in this study is to aid future research

programmatics, the key challenge is to devise an architecture that can be "mapped" into

ongoing research and development without being limited to a single architecture

evolutionary path.

3. Scenarios and User Needs

We are using a scenario-based approach to the development of futuristic conceptual

architectures that enable intelligent data understanding of massive data volumes.

Scenario-based approaches are used to drive clear and complete pictures of end-to-end

interrelationships among data and information, consumers, data providers, value-added

information services, data archives, and data acquisition missions [1,2]. Also, scenario

development uncovers a range of requirements for services and capabilities that can be

mapped to existing and future technology application. Consequently, forward looking,

79

tangible and imaginative Intelligent Data Archive (IDA) system application scenarios can

be factored into an architectural framework with descriptions of supporting technology.

The scenarios are oriented to an end-user perspective. Scenario descriptions identify

"actors" or involved stakeholders and illustrate dependencies among them within an

enterprise context. By extension this helps to clarify requirements for corresponding

system components and in identifying challenges to be addressed.

Applications scenarios lead to requirements, requirements have implications on

technology, and advances in technology affect the evolution of applications. By

observing this feedback process, we can characterize several futuristic scenarios. In

addition, such a strategy allows the architectural process to adapt quickly to new and

evolving scenarios and technologies.

A variety of contexts for possible scenarios have been identified with which to explore,

understand, and refine requirements for the IDA architecture. Examples of candidate
scenario contexts are:

• Ecological forecasting

• Precision agriculture

• Natural events and hazards (e.g., volcanoes, earthquakes, hurricanes, floods, fires)

• Skilled (10 - 14 day) weather forecasting

• Space weather

• National Virtual Observatory

Of these, in the initial phase of this study, we have used the precision agriculture and

precision weather forecasting contexts and developed two scenarios.

3.1 Precision Agriculture

The precision agriculture scenario is concerned with the scope and parameters of a farm

employing high-resolution Earth science data. The farm, which constitutes the virtual

digital entity in this scenario, is characterized as a relatively small spatial area

(considered in acres) for agricultural products suited to regional ecological, weather, and

growing constraints.

The "digital farm" concept interrelates ideas about digital technology, digital information,

GIS, and human-machine interfaces. We explored potential future requirements and uses

of quality high-resolution geo-spatial data employed in precision agriculture. The

information resources needed represent the consequence of interoperating services, value-

chain processes, automation, and filtering of data of specific relevance to the farmer.

Information-intensive support services helpful for crop planning, cultivation and

harvesting include current conditions monitoring, histories and time series studies,

trends/risks analysis, prediction, and forecasts, "what-if' investigations, and outcome

comparisons. Detailed information about land, weather, water, agriculture markets, prior

80

yields,agri-chemicaloptions,seeds,etc.areusefulfor cropplanningandplanting. High-
resolution information is helpful to monitor, assessrisks, and makedecisions about
appropriate interventionsto maintain crop health. Similarly, to maximize yields,
decisionsaboutharvesttiming require information aboutcurrentand future conditions
(e.g., local weather,soil moisture,crop maturity). Remotelysensedinformationabout
farm assets,including information collected from the farm about outcomesof plans,
cultivationtechniques, and harvests, is integrated within a digital farm for long-term use.

In all cases it is important that the information be provided to the end-user with

confidence estimates.

To make sense of all this information, the digital farm concept includes a digital assistant

that works on behalf of the grower and is very intuitive and simple to use. The digital

assistant is available from any interface (workstations, mobile devices) from within the

house, farm buildings, vehicles, or even the combine. Interaction with the digital

assistant can be conducted by natural language either via voice or keyboard.

The digital assistant can interpret, broker, and fulfill requests for information and services

from the virtual entity both dynamically and autonomously. In this scenario, the virtual

entity is a digital wheat farm that contains encyclopedic farm-relevant information

ontologically, spatially, and temporally organized. The digital farm keeps its information

stores about soil, crop, weather, and moisture conditions constantly updated. It interfaces

with external inputs of data and information sources as well as with farm-specific sensor

inputs. These functional interfaces are crucial to pooling farm-relevant data from raw

data sources such as primary archives and agricultural services.

The digital assistant can produce different views of this information by summoning an

array of functional services. These services can be invoked and combined with an

existing farm state model to produce a virtual 4-D representation of the entire farm that

the grower can inspect from his or her office or combine cab. The virtual farm serves as

an interactive reference of farm-specific assets integrated with historical, current, and

modeling information. Views of the farm can be summoned to within a square meter

with variable time series. Types of information range from historical to actual current

conditions to what-if scenarios cast into the future. Because the grower's digital farm

can "learn" from his or her queries and interests, the content and services it provides

adapt with change and specificity over time.

Most of the machinery on the farm also interacts with the digital farm information

services. Autonomous and semi-autonomous machines that plant, cultivate, and harvest

crops are precisely controlled with a combination of GPS, distributed functions, and data

from the digital farm. Optimal applications of seeds, fertilizers, and chemicals can be

controlled and recorded via wireless digital farm services. Similarly, data taken from the

field during cultivation and harvesting can be relayed to the digital farm as input for

archiving and further use. Together, the estimated levels of data usage in this scenario

approach 650 GB/year for a 1000 acre farm (275GB/year for subset data). Extrapolating

the subset data volumes to 600,000 acres of Central Valley agriculture zone in California

implies a potential distribution of 165TB/year.

81

3.2 Skilled (10-14 day) Weather Forecasting

Predicting future weather conditions over a particular region requires accurate data and

knowledge about atmospheric forces, physical parameters, boundary conditions, and the

interrelated nature of the atmosphere to the physical Earth system. While future

knowledge will remain incomplete, scientific processes and visionary methods for

improving that knowledge promise more accurate forecasts of atmospheric behaviors as

technologies and sensing systems evolve. However, the accuracy of weather predictions

tend to decay rapidly as a function of time due to the inability of prediction systems to

compensate for noise generated by the chaotic nature of the science, a lack of precise

initial conditions and the non-linear complexities of weather.

The weather prediction scenario we considered involves testing a 4-D model of the mid-

Atlantic region of North America while studying a developing weather condition. The

archival system includes the forecast model and the sensor systems used as input. The

strategy used in the forecast scenario is to link the sensor systems with the model such

that the archive drives the sensor data collection process.. These sensor systems act in

concert, as a web of connected, inter-communicating sensors ("sensor web") [3].

As the system collects data, it creates an initial forecast state that it uses at a future time

to compare against actual sensor data. The forecast from the model and the sensor data

are compared, and model errors identified. The forecast model is then corrected and a

new future state created. This cycle occurs periodically based on forecasting

requirements. Employing this closely coupled sensor model process allows short term

and long range forecasting with minimal error.

From the scientists' perspective, planning sessions are conducted with an interactive

visualization interface equipped with collaborative and immersive human-machine

technology. Team members have the option to meet virtually via their workstations or in

one of the research center's hypermedia tele-immersive conference rooms. In the tele-

immersive room, the scientists plan their research forecasts by summoning a vivid

holographic 3-D projection of the Earth, pointing to the region of interest, zooming in,

and accessing projections of scaled real-time weather conditions.

The scientists cycle through several current satellite views of the region selected from a

list and scan each view. Next they request views of the latest graphics and values for

temperature, pressure, humidity, and winds superimposed over the satellite image slightly

above the defined region on the global reference projection. In order to assess the whole

virtual picture of the weather condition, the team requests that the system detach the

selected region from the reference globe and project it as a cube presenting a 3-D

visualization of the weather conditions to an altitude of 25,000 meters. By rotating the

cube the researchers inspect the sensor grid sensitivities over the region from every angle.

The team next decides to run one hour, one day, five day, and ten day forecasts of

weather for this region using the current operational model, adding some custom-selected

82

inputsfrom a sensorarraypick-list. After a minute,theresultsarereadyto bedisplayed
in thesamevirtual regioncubespace.Theteamstudieseachforecastdisplayby avariety
of interactivereal-timecommands(by voice,gesture,andkeyboard).Theyexplorethe4-
D visualizationsby varying the temporal resolution,zoomingspatialareas/volumesto
inspectdetails,requestingdisplaysof simultaneousanalysisresult visualizations,and
selectingpredictedparametersfor further comparativeanalysis. Someteammembers
performdynamicwhat-if predictionscenarioscomparingwhat thesystemgenerateswith
their ownhypotheses.

With this experiencethe teamthen formulatesa testof their betaversionmodelusing
insightsgainedfrom the immersivecollaborativesession. Severalon the teamnotice
that higherresolutionremotesensingvaluesareneededin certainareasof the region to
accuratelypredict future changesof the pendingweathercondition. This might accord
with the deviation of the standardmodel from theoreticalexpectationsafter one day.
Furthermore,there is team consensusthat coupling their beta model with selected
componentsof the standardmodel would elucidatenew dependenciesand parameters
crucial to accuratepredictions. Scientist-providedspecificationsfor this new research
configurationare then interpreted,translated,brokered,and automaticallytaskedby the
system.

In the final episodeof this scenariotheteamstudiesthe emergingweatherphenomenon
throughvirtual projectionsof real-timeinformationandvariouscombinationsof modeled
predictions. For the modeling portion of the research,the team observeshow the
standardmodel self-adjusts its forecastsas a function of near-realtime automated
comparisonof actualversuspredictedparameters.When the predictedvariestoo much
from the actual, new initial conditionsare set.]-'hiscontinually keepsthe predictive
accuracyon track for the near term, but progressiveadjustmentsof the model are
required. The standardmodel in this scenariohas intelligenceappliedsoit monitorsits
own performance. With accessto a knowledgebase, the model may also pinpoint
componentsto bemodifiedeitherautomaticallyor by humanintervention.

In parallelwith thismodelingactivity, theteamcustom-configuresits betaversionmodel.
Theteamincludesa systemrequestthat re-tasksthe sensorweb to gatherhighly detailed
inputsfor a critical areaof the studyregion,to generatenew forecasts.The sensorweb
schedulesandpromptly complieswith therequest,providingcritical detaileddatafor the
betamodelto process.

Ten daysafter the start of the researchevent,the teamis able to concludefrom their
findings thatnew knowledgewasgainedaboutthe rareweathercondition. Furthermore,
comparisonsof performanceand outcomesbetween the beta and standardmodels
identify strongpointsin thebetamodelresponsiblefor improvingtheaccuracyof overall
forecasts. Validation of thesefindings leadsto the promotionof specific betaversion
componentsand two external model linkages to the standardmodel, adding a new
phenomenonto theknowledgebasewith additionalpredictivepower.

83

Makingthe abovevisionpossibleobviouslyinvolvesdevelopingnewobservationsensor
systemsas well as innovative techniquesfor datamanagementand utilization. It is
anticipated that improvements to existing capabilities combined with evolving
infrastructuresandinnovativeresearchtechnologiescanenableskilled weatherforecasts
of tento fourteendaysby 2025(currentforecastpredictiveskill is five to sevendays)[3].
Skilled forecastinggoalssuchasthis requirequality, mixed-resolutionobservationsand
data acquisition systems; very rapid processing of observations; complex data
assimilation strategies;predictive modeling strategiesand algorithms; and powerful
technologyinfrastructuresfor archiving,distribution,and interactivevisualization. An
initial assessmentof expected optimized global data volumes covering required
parameters,temporal/horizontal/verticalresolutions,and vertical measurementlayers
yieldsanestimateof about20TB/dayby 2025.

3.3 Empirical Observations

While futuristic scenarios project the needs for research and applications, empirical

observations of data access and usage patterns provide a base state and historical trends.

They also give hints on how these patterns may change in the future. The access patterns

are a function of the requirements of various users and applications as well as the state of

technology. The term technology here includes both hardware and software. For

example, existence of faster hardware promotes the use of data mining software, which in

turn allows different and more useful forms of access from the archives than is currently

possible. As visualization tools, network bandwidths, and desktop computing capabilities

increase, new requirements may emerge in accessing archived data.

In the initial phase of this study, we have studied patterns of users' access at the Goddard

Distributed Active Archive Center (DAAC) since a record exists starting from the

DAAC's inception in 1994. More observations at other DAACs and other types of data

centers would be useful to provide a broader insight to access patterns. Some of the

questions to be addressed by such empirical observations are:

• Should data products be processed routinely and stored for future distribution, or

should they be produced only when a user or an algorithm requests them?

• For data-intensive algorithms, should the data be moved to the software, or the
software to the data?

• Should architectures be developed primarily based on average data access

requirements or peak requirements, and how can peak requirements be
characterized?

A key capability implicit in the term Intelligent Data Archive is an awareness that

extends beyond the data. While we commonly think of this awareness in its "operational

intelligence" context (e.g., resource management, autonomous data gathering), an

intelligent archive should also have "scientific intelligence," i.e., the higher-level

knowledge that is derived from the data. Clearly, intelligent archives that include models

84

havesomehigher-levelknowledgeaboutthedata.Beyondthat,awealthof knowledgeis
publishedin scientificjcurnals. Studyingthe connectionbetweendata in archivesof
todayandthe scientificknowledgederivedfrom themwill providevaluablehints for the
designof future intelligentarchivesthat embedknowledgewith data. This initial phase
of study includesa"proc.f-of-concept"attemptat closingthedata-knowledgeloop using
automated(andsemi-automated)methodsto link datasetsfrom theGoddardDAAC with
scientific knowledgeresultingtherefromas expressedin publications(limited to those
availableelectronically) Someof the difficulties encounteredhere provide valuable
lessonsin currentshortcJmingsin the world of dataarchivesandelectronicpublication,
whichoffer opportunitie:;for futurework.

4. Technology Evolution/Revolution

In the development of data and information systems over the last ten years, significant

progress has been made in several areas. These areas include: handling large volumes of

data at high rates, distr buted computing, archiving and distribution, data and metadata

standards to facilitate system interoperability and provision of services such as subsetting,
and user interfaces.

In the Earth science domain, this progress is exemplified by NASA's Earth Observing

System Data and Information System (EOSDIS) [4] with its distributed set of DAACs

and Science Investigator-led Processing Systems (S1PSs), the NASA-initiated federation

of Earth Science lnfornation Partners (ESIPs) [5], and the international Committee on

Earth Observing Systeras (CEOS).

On a more general level, the Global Grid Forum and NASA's Information Power Grid

[6] represent efforts to develop persistent networked environments that integrate

geographically distributed supercomputers, large databases, and high-end instruments.

These resources are managed by diverse organizations in widespread locations, and

shared by researchers from many different institutions. Within the Global Grid Forum,

the Jini activity [7] is chartered to address the need for a grid framework to support both

resource and service ctiscovery, in an environment in which these resources and service

providers may enter and leave the grid dynamically, and where diverse protocols are

expected to exist.

It is expected that near-term archiving systems will arise from these efforts as well as

several commercial developments in hardware and software technologies. We envision

that over the longer term, such "grid" infrastructures will evolve into a finer-mesh,

perhaps self-organizing "fabric" as computing and communications become increasingly

ubiquitous.

The evolution of (and revolutions in) technology over the last twenty-five years

demonstrates the difficulty in predicting the technologies that may be available ten to

twenty-five years from today. However, a study of existing forecasts by well-known

scholars in various areas relevant to data access and management is useful in

conceptualizing new architectures for IDA.

85

Potential technology drivers include processors,microelectronics,nanotechnology,
biotechnology,sensors,intelligentsystems,communications,anduserinterfaces.In each
of theseareas,advancesare being madethat will have a dramaticimpact on future
archivearchitecturesand functionality. In the hardwaretechnologyareas,the cost per
unit capability hasbeendecreasingrapidly and is expectedto continueto do so. The
implicationof this on theend-to-enddatamanagementprocessanddatautilization is that
it enablesimplementationof a numberof servicesthat haveheretoforebeenlimited by
hardwarecostsand encouragesexperimentationand advancesin software techniques.
Advances in techniquesresulting from research in intelligent systems (including
intelligent data understanding)sponsoredby NASA and other organizationsbecome
suitablefor incorporationinto theoverall datamanagementandutilizationprocess.

4.1 Advances in Storage Technologies

Today we are witnessing the rapid progress and convergence of the fundamental

technologies that make up archiving: storage, computing, and communications.

Traditionally, digital storage demands have grown at or beyond 60 percent annually.

Over the past several years, growth has exceeded 100 percent per year for lnternet and e-

commerce applications. Data storage functions have undergone an evolutionary change

over the past ten years, and are now commonly performed by smaller high-performance

disk drives implementing high-availability RAID storage coupled with more capable

archiving software. In addition, magnetic tape technology is continuing to increase in

capacity and speed. On the other hand, optical storage now seems more oriented toward

the entertainment market. Both storage area networks and network-attached storage

(SAN and NAS), along with high-speed optical communication, have fundamentally

reshaped the traditional storage model. In addition, SAN and NAS archiving strategies

have separated storage from being dedicated to any one server and refocused architectural

strategies to implement a union of storage devices interconnected by high-speed optical
networks.

Even in the near future (i.e., the next five years), the costs per unit of computing, storage,

and bandwidth are expected to continue their rapid decline. The historic trend has been

that increases in requirements have kept pace with the reductions in per unit cost to

maintain roughly the same annual expenditures for hardware. However, in general, the

value of an archive system will move from the hardware to the management and

utilization of the data. These are what an intelligent archive should aspire to do as

performance and functionality increase, especially in a distributed architecture.

Currently, NASA uses both magnetic disk storage (for on-line access to relatively

moderate data volumes) and tape storage (for long-term storage and access to large

volumes.) The amount of data available on disk has been increasing as disk storage

capacity has increased exponentially over the past ten years (over 60 percent annually

since 1992). Indeed, some predict that magnetic disk storage will become more cost

effective in coming years even fo(large volumes, as magnetic tape densities have not

been increasing so fast as disk. However, while online storage capacity has increased,

our ability to access data has not kept pace because input/output performance has only

increased linearly [8]. Magnetic recording for both disk and tape will continue to grow at

86

about60% annuallyuntil thephysicalbarrier (knownasthesuper-paramagneticlimit) is
reached.

4.2 Paradigm Shifts

It is also expected that as a result of scientific advances or fundamental limits of nature,

paradigm-shifting revol,_tionary events are likely over the next twenty-five years. For

example, quantum mechanics will play an ever-increasing role because it involves the

performance of all micmelectronic devices and the creation of molecular and atomic size

tools. Today's smallest transistor etchings span a mere 130 nanometers. The expected

quantum dimension limit for microelectronics is approximately 25 nanometers, where the

laws of quantum physics allow electrons to transition across semiconductor gates even

when the gates are closed. In other words, the basis for all modern computing

technologies will run inlo a "brick wall."

The effects of these paradigm shifts are illustrated in Figure 2. In the pre-paradigm shift

era, we may have extem.ions to the architectures of today, with increases in the speed and

ability to serve data and information to users. However, in the post-paradigm shift era,

the nature of the entire end-to-end system could undergo revolutionary changes. This

implies that in conceptualizing IDA architectures, it is useful to think in terms of

functional capabilities and their necessary interactions and interfaces without being

constrained by today's limitations on the locations of such capabilities.

87

88

5. Recommendations _nd Future Work

At this stage in our study, we have a set of recommendations shown in the form of a

preliminary roadmap to move from archive organizations for traditional data access to

intelligent archives that facilitate and take advantage of intelligent data understanding.

This roadmap is shown in Figure 3. As shown in this figure, the steps leading to an

intelligent archive involve obtaining a better understanding of the following sequence of

items:

• Current data access and archiving

• Future data access a_d archiving trends

• Future scientific applications

• Future enabling technologies

• Roadblocks involvec in the formulation, development, and building of an intelligent

archive

• Costs involved in formulating, developing, and building an intelligent archive.

There are several areas for further, more detailed, exploration as we continue this study:

More Scenarios

It is important to ha-e sufficient scenario diversity to avoid biasing the architecture.

Thus, we plan investigation of additional science and applications scenarios in the

areas of space science, ecological forecasting, and natural hazards forecasting.

Specialized Technology

The initial investigation began with surveying general technologies, such as

computing and networking, to determine how they might drive or enable intelligent

data understanding. However, there are several areas of more specialized technology,

particularly in the a:'ea of software, which may be equally important as drivers or

enablers. These inclade areas such as IP-in-Space (enabling a seamless space-ground

data system) as well as the various data mining, fusion and visualization technologies

being developed a_,, part of NASA's Intelligent Data Understanding program.

Advances in science and modeling algorithms are another fertile area.

Further Architectural Definition

As the investigation of new scenarios and specialized technologies advances, these
should allow further definition and clarification of the IDA architecture. This in turn

should promote further definition of the key architectural issues, challenges and

trades, which represent an important input into research directions.

89

90

6. Acknowledgements

This study was funded by the Intelligent Data Understanding area of NASA's Intelligent

Systems Program. Views and conclusions contained in this paper are the authors' and

should not be interpreted as representing the official opinion or policies, either expressed

or implied, of NASA or the U. S. Government. The authors would like to thank George

Serafino of NASA G_ddard Space Flight Center, Kwang-Su Yang of George Mason

University, and Randy Barth and Jean Bedet of SSAI for their help with empirical

studies, and Lara Cleft ence of GST for editorial assistance.

References

[1] T. Quatrani and G. Booch. Visual Modeling with Rational Rose and UML, (Boston

MA: Addison-Wesley. 1998)

[2] Lockheed Martin Advanced Concepts Center and Rational Software Corporation.

Succeeding with the tlooch and OMT Methods." _4 Practical Approach, (Boston MA:

Addison-Wesley, 1996)

[3] M. Steiner, R. Atlz s, M. Clausen, M. Kalb, G. McConaughy, R. Muller, M. Seablom,

"Earth Science Technology Office (ESTO) Weather Prediction Technology Investment

Study," NASA Godda_d Space Flight Center, October 5,2001

[4] G. Asrar and H. Ramapriyan, "Data and Information System for Mission to Planet

Earth," Remote Sensing Reviews, 13 (1995) 1-25.

[5] The Federation of _2arth Science Information Partners, http://www.esipfed.org/

[6] W. E. Johnston, et al. "Information Power Grid," NASA Ames Research Center.
Available at

http://www.ipg.nasa.g_v/ab_utipg/presentati_ns/PDF 9resentati_ns/IPG.AvSafety.VG. 1.

1up.pdf

[7] Global Grid Forum. "Charter of the Jini Activity Working Group." March 2001.

Available at http://www-unix'mcs'anl'g°v/gridf°rum/jini/charter'pdf

[8] Fred Moore. Stora;;e INfusion. Storage Technology Corporation, 2000.

[9] J. Gray and P. S:aenoy. "Rules of Thumb in Data Engineering," Redmond, WA:

Microsoft Research Advanced Technology Division, December 1999 (Revised March

2OOO).

91

Storage Issues at NCSA: How to get file systems going wide and fast

within and out of large scale Linux cluster systems

Michelle L. Butler

National Center for Supercomputing Applications (NCSA)

605 E. Springfield Ave

Champaign IL 61820

mbutler@ncsa.uiuc.edu

Tel: + 1-217-244-4806

Fax: +1-217-244-1987

Abstract

This paper will discuss the history of storage at the National Center for Supercomputer

Applications (NCSA) _ver the last fifteen years from inception to a four hundred terabyte

archive. The paper discusses supercomputing requirements, hardware and software

configurations, and tae evolution of data management at NCSA. This paper also

discusses the strengths and weaknesses of NCSA's different storage strategies, and gives

a detailed discussion of the current system and how it is being evolved to meet the

requirements of the TeraGrid computing systems, and large-scale Linux clusters.

1 Introduction

As NCSA, compute power has increased over the years, and so has the mass storage

system to keep up with the ever-increasing rate at which data is produced. The NCSA

mass storage system ,_tarted in 1986 with thirty-six gigabytes of disk, a dual processor

Amdahl performing twenty MIPS, with fifteen megabytes memory, and a single network

adapter in the form of a 1.5 megabits Hyperchannel connection. The system has evolved

to a single system configuration of sixteen 250MHz processors, twelve gigabytes of

memory, three Hippi and six GigE network interfaces, and two terabytes of disk for

overall I/O performan_:e of two hundred megabytes per second.

2 History of Mass Storage at NCSA

In 1986, the first mass storage system at NCSA was an Amdahl running the Common

File System (CFS) sottware package originally developed by LANL. This system was in

production from 1986 to 1991 at NCSA, and served an evolving array of supercomputers

from NCSA's original Cray XMP, to a Cray2, and a CRAY YMP. Access to mass

storage was through a CFS client running on the Cray supercomputers. The data was

staged to the Amdahl's disk cache, and then transferred through a proprietary protocol to

the compute engine's disk. The only access to the mass storage system was through the

Cray CFS client. Di;k space on the Cray systems was purged after jobs completed, so

users were responsibl,: for storing files they wished to retain. The average file size was

skewed by CFS's reqt irement to break data into chunks of two hundred megabytes. Files

could not span tapes, and two hundred megabytes was the maximum that could be placed

on the 3480-tape technology employed. All tapes were manually mounted, and redundant

copies of every tape were made for off-site disaster recovery. Users began in later years

to utilize other small,:r data storage facilities. Direct access to their data was needed

without mediation by an HSM, and then to a secondary machine like the Crays at NCSA.

93

The secondary staging was limiting, and the performance through the Hyperchannel was

considered extremely slow for the times. User observed data rates were usually 1 Mb/s

for a single stream, and multiple streams displayed a more dismal rate. New high-speed

tape technologies were emerging, but the Amdahl could not be upgraded to handle those.

The Amdahl was neither compatible with emerging tape and network technologies nor

capable of advancing to follow on standard data protocols for data transfer.

NSL UniTree and UniTree from DISCOS were researched, and thought to be good

products, but support in a 24/7 highly demanding production environment was

questionable. Convex ported UniTree to their systems, and created a tuned version that

was both faster and met NCSA's reliability requirements. NCSA wrote a conversion

program for the move from CFS to Convex UniTree. The CFS databases were converted

to UniTree format, and the system was "taught" how to read CFS tapes. Over 2 TB of

data were converted, with a downtime of 3 days, to Convex UniTree. NCSA spent the

next year rewriting all the CFS data tapes to the UniTree format, so code to read CFS

tapes could be deleted at some future date.

2.1 Convex's version of UniTree

In 1991, NCSA moved to a C220I machine from Convex. The machine had dual

processors and was wired for fast I/O. It had one hundred gigabytes of local SCSI disk,

five hundred megabytes of memory, twelve 3480 tape drives manually mounted, and 1

Ethernet. The main user base still resided on the Cray2 and Cray XMP with a Convex

3880 machine coming into production as an additional compute server. The storage on

the supercomputers was still purged as jobs finished, and users were required to store

their own files and manage their own mass storage space. Accessibility was changed to a

common FTP interface for all data, and data transfer performance improved because of

the Ethernet interface(s). At first, the users liked the new procedures and were very

happy with the FTP interface but, over time high-speed data networks were installed on

the Crays, increasing network bandwidth, and mass storage transfers once again became a

bottleneck. The data rate was too slow. User data rates were 6-8 Mbit/s (1MB/s). The

one Ethernet interface could not keep pace with 2 systems running Hippi. Jobs were

waiting on the Crays, and were wasting compute time in I/O wait states for the mass

storage system to return.

The amount of data the system was ingesting was becoming more costly to store, and

NCSA was forced to set storage quotas to limit users, mainly by encouraging them to

improve their file management rather than by restricting the work they were able to

accomplish. However, users reacted by storing their data in alternative, less reliable

places that created more hardship for them. A new tape technology, Metrum 2150 tape

drive, moved data at twice the speeds of the 3480's, stored seventy times as much on a

tape (200 MB on a 3480 vs. 14 GB on Metrum), and a media cost was introduced to

alleviate NCSA's storage cost problems. As data was written to tapes holding 14

GB/tape, the media expenditures of NCSA dropped dramatically. The Metrum tape drive

specification stated drives should be used over 20% of the day. NCSA calculated that

with 8 drives, that requirement could be met. NCSA also still dual-copied all data. The

cost effectiveness of the Metrum tape medium enabled NCSA to lift user quotas. Over

94

thenext threeyears,additionalEthernetinterfaceswereaddedwith increaseddisk cache
allowing files to resideon disk longer. It becamevery apparentthat a Hippi interface
wasneededto movedaa over the network faster,but the C220I machinecould not be
upgradedto include that interface. The Convex C3880was being phasedout as a
computeserver,anda l_rgeThinkingMachineCM5 wasbeingbroughtinto production.
NCSA's massstoragesystemwas "moved" to the C3880 machine. There was no
conversionprogramneeded. The C3880 had the sameoperating system and same
hardwareastheC220I raachine. The databasesweremoved(FTP)to thenew machine
alongwith the tapedrives. The datawaspurgedfrom disk (all written to tape)on the
C220I. Whenthe C3880cameup, the datadiskswereempty,thedatabasesshowedall
thedataon tape,andsix terabyteswere"moved" to tile newmachine.All this took place
duringanormaldowntirle segmentof lessthan3 hours.

2.2 Continued Upgrades

The Convex C3880 machine (1994-1997) system was configured with eight Metrum tape

drives, two gigabytes o1" memory, two hundred gigabytes of disk, eight processors, one

Hippi interface, and tw,) Ethernet interfaces. All traffic from the supercomputers was

routed over the Hippi while traffic from other systems went over the Ethernets. This

caused less congestion on the Hippi interfaces for slower data transfers. Users accessed

mass storage through FTP and still managed their storage. During the production years

of the C3880 archival storage machine, the CM5 was decommissioned, and SGI Power

Challenge machines came into production. There was no longer one large machine, but

several large machines all running jobs, and storing data. With many more machines

capable of storing data _hrough Hippi interfaces, a single Hippi interface could not keep

up. Data streams started piling up with 3-4 concurrent transfers, driving down Hippi

performance. The Hippi performance from the SGl's to the Convex was poor due to

different revisions of hardware. The SGI PowerChallenge machines were capable at the

time of 25MB/s, while the C3880 could transfer to the CM5 at 15MB/s, and only 3MB/s

to the SGI machines. "]'ape technologies were also changing. The vendor was phasing

out the Metrum tape. r'herefore, new tape technologies were needed, but could not be

connected on current machine. A new system was needed that could handle multiple

Hippi interfaces (the latest revision), numerous simultaneous transfers and, as always,

new tape technologies.

2.3 HP Exemplar X-class Machine

In 1997, NCSA purchased for the mass storage system server a HP X-class Exemplar

machine. NCSA had stayed on the C3880 machine one year longer because there was not

a strong I/O machine tc move to until the Exemplar machine was ready for production.

There was again very liltle conversion needed for the twenty-eight terabytes of data to be

up and running quickly. The conversion was the same from the C220I to the C3880. All

data was purged from disk, databases moved (FTP) showing all data on tape, old host

turned off, devices moved, and new host booted with same old name. NCSA stayed on

this machine for one and one-half years (1997-1998). This machine had eight processors,

four gigabytes memory, five hundred gigabytes of SCSI hardware RAID disk, two Hippi
interfaces and three Ethernet interfaces. Our user base started on the SGI Challenge and

Power Challenge machines, and then migrated to the SGI Origin class machines. The 2

95

Hippi interfaceswere divided up amongthe systemssothat a "load sharing"could be
achieved,giving usersdualhigh speeddatatransfersinto themachine.Thenewmachine
wascapableof muchmore throughputthantheC3880,sothe simultaneousdatastreams
countdroppeddramatically. Userscratchspacewasincreasedandmorememoryadded
to the productionmachines,but datamanagementwashandledas previously, an FTP
interfacefor usersto move/storedataasjobs finishedin batchqueues.

The mass storage server system turned out to be a terrible environment. HP, who

purchased Convex, phased out UniTree and Convex hardware support. Reliability of the

system was questionable, it required a reboot every couple of days. NCSA did get some

work done in spite of the problems by purchasing six IBM 3590 tape drives including

NCSA's first tape robot, an IBM3494 library. NCSA copied all the Metrum data to IBM

3590 tape technology within one year because the vendor was phasing out the Metrum

tape technology. The IBM3590 was faster than the Metrum, but did not hold as much

data/tape. The IBM 3590 held at the time 10GB/tape. The cost difference was not

significant enough to warrant changes in NCSA's storage policies.

The environment for the users remained the same. The aggregate throughput of the

machine was much faster, but its instability drew many complaints. The Exemplar

machine was able to stage/retrieve user data on both Hippi interfaces at 21MB/s (a

combined total of 42MB/s). Normally there were 3 simultaneous transfers, but there

have been as many as 12. The number of processors and machines in the Origin cluster
continued to climb which in turn increased the need for more data streams to the mass

storage system. Stability and aggregate throughput to keep up with the amount of I/O

produced by our users were issues and NCSA again needed to upgrade

2.4 The switch to UniTree lnc and SG|

In 1999, NCSA evaluated HPSS, DMF and UniTree, Inc. storage systems. NCSA had a

solid base in SGI's technology with much experience in the hardware and the software.

UniTree, Inc. was selected to run on an SGI server. A new Origin eight-processor

machine was purchased with four gigabytes of memory, two terabytes of locally attached

fiber channel disk, three Hippi interfaces, and two Ethernet interfaces. UniTree, Inc

provided a conversion program that rewrote the HP formatted databases on to the SGI in

UniTree Inc's format, the data was purged from disk, devices moved. The capability to

read HP formatted tapes was already in UniTree Inc's version. The new system came up

with seventy-five terabytes of data on tape in a matter of hours. UniTree, Inc. on our SGI

machine has proven to be reliable and efficient from its deployment in 1999 to today.

The aggregate throughput of the mass storage system was 180 MB/s. During that time

NCSA's user base was migrated from the one hundred and eighty SGI Power Challenge

processors to fifteen hundred SGI Origin 2000 processors logically clustered into 10-15
individual machines. The user data rates were and still are 45MB/s for each stream across

the Hippi network.

The three Hippi interfaces on the mass storage system were load "shared" by dedicating a

Hippi interface to the interactive machine, and splitting the traffic for the remaining

Origin processors across the other two Hippi interfaces. The six 3590 drives were moved

96

on to the new system, and a STK Powderhorn with seven 9840 drives and four 3590

drives was installed for a mixed media solution. This is the first time that NCSA has had

a "mixed" media tape solution without decommissioning one of the two. NCSA used the

9840 tapes for the ,,maller files in the archive, taking advantage of the mid-load

technology making tirae to first byte much faster. This small file threshold has changed

over the years, but started out as 500MB or less. The 3590-tape technology was used

for all other files, and all copy 1 data moved to an offsite facility. NCSA continued to

run both IBM and STK libraries until the fall of 2001.

2.5 Upgrades to Origin 2000

Over the last two years, the mass storage system has grown in size and capability. NCSA

started with eight 195 MHz processors, two gigabytes of memory, three Hippi network

interfaces, and two Ethernet interfaces, an IBM library with capacity for 12 TB of

storage, a Powderhom library with capacity for 120 TB, ten 3590 tape drives, and seven

9840 tape drives. The system today has grown to sixteen 250MHz processors, with

twelve gigabytes of memory, an ADIC AML/2 library with two sections for a capacity of

720 TB, an STK Powderhorn with capacity of 120 TB, six IBM LTO tape drives, ten

3590 tape drives, seven 9840 tape drives, eight GigE network interfaces, and three Hippi

network interfaces. I:s current throughput is 235MB/s with an archive size of 420 TB.

In the past two years, the user base machines have changed. NCSA now has fifteen

hundred SGI origin processors with a mixture of 1(i TB of disk. There are plans to deploy

15 TB more for production machines early in 2(102. The mass storage system today

supports a production IA-32 Linux cluster of 1024 processors and five terabytes of disk, a

180 node IA-64 (Itaniam) dual processor Linux cluster, and an SGI Origin Array that will

be phased out over the next two years as the Linux clusters move into production. The

Hippi network will also be phased out, with GigE as the replacement. The performance

study that NCSA has completed showed that the 45 MB/s single stream from the SGI's

will not be matched, but the aggregate throughput of the GigE is greater because the

handling of multiple concurrent streams is better. A single Hippi interface single stream

runs at 45 MB/s and drops to 25MB/s for two streams, and 8 MB/s for three streams. A

single GigE interface from SGI to SGI will transfer data at 25MB/s, and drops to 22 for

two streams, and to 20MB/s for three stream. NC'SA usually has 5-8 streams of data at

all times.

The six TFLOP TeraGrid system will be the next big increment. The data that the mass

storage system is ingesting is expected to continue to increase; however, predicting the

growth rate and the necessary aggregate throughput needed has been difficult. Big jumps

in CPU performance have inevitably produced more and more data, and the growth

trends appear to adwmce along the same curve that is typical of other supercomputer

centers. [1] If there is a big jump in CPU hours offered, the amount of data stored shows

a proportional jump. But the network bandwidth into and out of the mass storage system

that is necessary for applications is hard to predict. NCSA has been increasing aggregate

bandwidth of the storage system after the need has been manifested.

97

NCSA has set a goal for 2002 of achieving 750 MB/s (three times current throughput) as

the optimal performance for the mass storage system for the first year of the TeraGrid

machine. The Itanium cluster is entering friendly user testing (March 2002). As 180 dual

processor machines start storing data to the mass storage system through each systems'

own GigE interface, observations will be gathered and adjustments will be made to local

disk and archive systems as needed. Only time will tell if these predictions will ring
true.

2.6 Hidden work for the mass storage system

The mass storage system at NCSA not only stores/retrieves user data, but also insures the

integrity of the data trusted to the archive. In other words, if a file has been stored at

NCSA's mass storage system, it will be retrieved. No files transferred properly to the

mass storage system at NCSA have ever been "'lost" or become irretrievable. There was,

on one occasion, Hippi protocol inconsistencies between SGIs that contributed to a

handful (<50) of files being corrupted before they reached mass storage. Those files

were then retrievable, but still "corrupted". The duplicate copy has been a costly but

wise investment. Media failures occur occasionally, but users at NCSA do not notice

other than a file might take longer to retrieve than normal. NCSA is constantly rewriting

data to new tape formats/media. Migrations in the past have been from the 3480 tapes to

Metrum, Metrum to 3590, 3590 to 3590E or LTO, 9840 to 3590 or LTO. When

purchasing a machine, NCSA has always included the background processes that need to

take place to maintain the environment. Tape drives are not only needed for

writing/reading of user data, but for repacking user data onto different tapes, possibly

different tape types. The memory, disk cache, CPU, and tape infrastructure must be

capable of handling these additional "hidden" tasks of a well-managed HSM.

3.0 Disk strategies for big iron

The large batch systems at NCSA serving supercomputing science over the years have

changed quite a bit. Each increase in CPU capacity, memory, and new architectures has

meant increased demands on the mass storage system. Sometimes, it has been more

bandwidth into the machine for each stream, other times it has just been an increase in the

amount of data stored. NCSA has benefited from other disk storage solutions that

complement the mass storage system. Pools of local disk for the batch systems, and

other smaller disk resources managed by the users for their own data have been highly

effective. Each strategy tried has its niche for how it fits in the environment, but none of

the solutions can do it all. Below are details on NCSA's file system strategies.

3.1 NFS

NFS has been used by every supercomputer that NCSA has placed in production. The

Crays used it for cross mounting file systems to mount home directories and application

software. NFS is slow. However it is easy, convenient, stable, compatible, and well

understood by users. NFS is currently being used by NCSA for protecting the critical

file systems of the large supercomputers. A failsafe server serves file space for user

home directories as well as all application software. These file systems are exported

from the failsafe system to the Origin Array, the Linux IA32 cluster and Linux IA-64

cluster. NFS is also used to cross mount all the local scratch file systems for each "type"

98

of cluster. NFS is usedby batchjobs to seeall storageon thedifferentbatchmachines,
but userstakea performancehit by using it for read/writeoperations.

3.2 Andrew File Systenl

The Andrew File System (AFS) is heavily used more for the desktop infrastructure

environment. NCSA hoped in 1994 that AFS would replace NFS for home directories

and application software but the file system didn't have the performance required. AFS

is used on the Origin ch ster for a common link to center-wide installed software such as

perl, email readers and the like. Some users do use AFS for data sharing to other

environments at NCSA without FTP transfer, but performance is quite limited.

3.3 Local scratch

As described above, the large batch systems have local disk attached that is available to

users for the duration of their batch job. As the jobs run, data may be retrieved from mass

storage and before the job ends users are responsible to store their data back. NCSA has

written a few "managen_ent" scripts for our users fol doing persistent stores so that data

will not be removed fro:n scratch file systems until the files actually make it to the mass

storage system. In the c ays of the Cray Super Computers users, had access to a gigabyte

of disk storage for scratch space and that has grown steadily to where today NCSA

supports file systems in :he terabyte range.

3.4 Backup

The backup system at NCSA also runs a UniTree storage system on a SUN 6500

machine. It has four IE M LTO tape drives, and shares the ADIC library with the mass

storage system. This system handles one terabyte of data per week. NCSA backs up the

AFS, NFS, /root, and /usr file systems for all the batch machines and all desktop

machine/laptop/file sewers. The data in the scratch file systems is too volatile and

therefore are never backed up.

4. User and Storage patterns

The amount of storage at NCSA has continued to climb at a steady pace. Recently the

growth has been more v_ggressive. The years 1997 - 2001 saw an 88% growth rate. As
machine CPU hours continued to grow at close to exponential rate, the storage also

followed faithfully. Tae chart below maps out the "normalized CPU hours" of the

individual production machines at NCSA. The normalized hours have been calculated
based on utilization of 1he machine_ and then quantified to be equal among the different

machine types. This allows us to equate cpu hours for all machines at the different

supercomputer centers br NSF allocations of CPU hours. The bottom section of this

chart shows the different machines that were in production during those years.

99

o

O

I-

,,,!
0
2_

=3
a.

0
Z

1000 _ --

lOO

10

1

lO,OOO,OO_

1,000,000

100,000

10,000

Best fit 62% annual gro_

Mass Storage

Best fit 66% annual gro_

C °,es

C ra_'-2

Y-MP

CM-5

C3880
C M -2

X-MP Challenge

O rt_lin

Exemplar

f _] ' ' _1993 r _ , J , _ , i1985 1987 989 1991 1995 1997 1999 2001

Year

As the archive has grown, storage and retrieval patterns have changed. Large file archives

historically have been read only [2] At the CFS conversion time, the size of the archive

was 2 TB. UniTree was used primarily to store files that were never retrieved. The older

the data, the lower the chance it would ever be recalled. Researchers try to predict what

files will be used [3], but over the years, the "reuseability" of the files has changed

dramatically. In 1992, as the graph below illustrates, 18% of files up to three months old

were retrieved, at six months 12% were retrieved, and after 12 months 3% were recalled.

Performance of the archive was unacceptable, and scientists found it faster to recompute

data than to get the file from the archive. With increases in bandwidth and stability the

data retrieval statistics have been changing, new files in the first three months in the

archive have a retrieval hit rate of 50%, the first six months at 28% and drop only to 18%

for data within its first year in the archive. So it is no longer a write only archive. Data

storage performance was one of the most important criteria that the archive was judged

on at NCSA, and now the increased speed and capacity have made data retrieval

extremely important as well. Users are no longer recomputing, but retrieving data as

needed, quite often, as the chart below shows. As scientific archives grow because of

further research data derived from those archives, the role of data retrieval can only
increase..

100

% of files retrieved

60

5O

40

30

20

10

0

3 months

i

6 months 12 months

age of first retrieval

•-.=--- 1992

-4-2001

4.1 Growth for whole archive

Our growth patterns have remained much the same over the years. The archive size has

been doubling about ew,xy year. The NCSA archive by this time next year will be close

to a petabyte in size. Below is a graph of NCSA's overall growth. The first ten years are

overshadowed on the graph by the huge amounts of data stored in the later years.

101

mass storage growth

450-

400-

350

300

250

2OO

150

100

5O

0

1985 1987 1989 1991 1993 1994 1997 1999 today

End of year

The graph of just year 2001 storage statistics for NCSA has a line for each day. The

growth is very linear, and continues. For the TeraGrid, there will be a large increase in

the data stored, but the amount is not known at this point. It is very hard to predict

storage requirements for supercomputer centers [4]. As users have been given more

resources in the past, they have produced more data, and storage seems to stay on the

same curve as the normalized CPU hours of the machines.. The above graph does show a

correlation to the CPU hours of a machine and the amount of data stored, but the number

of CPU hours offered by a machine is not known. Within the next five years, there will

be a technology switch again, as NCSA continues on the same curve; it is not known

what is next for NCSA or supercomputing in general. [1]

102

379.2

200
IIIMIIIIII Ill ... _,*,,

_U
11_1 "1 I1[_ _ _].... -- L L , *'"' ' II ----;_'_"_ v III

II I[I]1iiiiiiiiiiii

Date

4.3 Usage patterns and filesize

The average file size has also doubled in the last couple of years, but the average file size

of our archive still seems small for a 400TB archive. Small files are normal for many

large archives [4]. A chart of the average file sizes stored in the archive for the last six

years shows that it has been increasing, but there are still very small files being used,

while there are onl) a few files that are large (>500GB). This means that when

purchasing drives and media types, the small files need to be considered. The small file

is sometimes not brotght into the mix when discussing mass storage, because large files

are the norm, but as seen here, that is not true.

Year Avera[e File Size (MB)
1996 8.95

1997 13.75

1998 20.49

1999 38.97

2000 43.50

2001 68.88

103

The filesize growth may be attributed to increased capabilities of the processors so that

transfers are no longer as time-consuming. The filesize certainly has not grown as

expected, so maybe moving files that are 100GB or larger is still difficult, and a huge

undertaking not only to stage, but to work with on the various production machines. As

the average file size continues to grow, in 5 years NCSA users will be moving files > 100

GB with ease because of advances in data management and increased bandwidth.

Our top 10 users in FY 2000 stored:
Files TB

Userl 4,391 3.2
User2 259 2.8

User3 77,498 2.5

User4 107,722 2.3

User5 1,162 1.8

User6 2,743 1.7

User7 3,790 1.6

User8 26,651 1.4

User9 8,757 1.3

Userl0 9,101 1.2

(user 11 in 2001)

(user 9 in 2001)

(user 1 in 2001)

(stays in slot 6 for 2001)

While in FY 2001 the top 10 users have stored:

Files TeraBytes

Userl 328,394 9.4

User2 10,163 4.3

User3 23,404 4.0

User4 9,104 3.8

User5 1,871 2.5

User6 4,275 2.9

User7 2,427 2.1

User8 5,683 1.9

User9 30,033 1.9

Userl0 4,122 1.8

Just among our top ten users, the amount of data stored has considerably jumped. Our

largest user in 2000 stored over 3 TB of data in 1 year. In 2001 our top four users each

stored over 3 TB of data, with our top user in 2001 alone storing 9 TB. Another

interesting point from the data above is that the top users at NCSA do not remain the

same year after year. Only 4 users in the top 10 for year 2000 were in the top 11 of
2001.

4.4 Building for the TeraGrid machine

The NCSA mass storage system will be receiving another upgrade in Jan 2002 with an

upgrade to six terabytes of disk. NCSA will also add an additional distributed disk

server slated for production use in spring 2002. The second disk server will be an SGI

Origin 3200 with four processors and two gigabytes of memory. The 3200 machine will

have six terabytes of disk and ten GigE interfaces for a throughput of 250MB/s. NCSA is

104

researching currently how to split data across the machines, with criteria based on uid,

gid, original IP addres% or file size being investigated. The new system combined with

the current system rrakes the disk cache twelve terabytes with a real aggregate

throughput of 450MBL,. NCSA will be also adding ten more IBM LTO tape drives. In

late 2002 a 3 rd distributed disk machine, an SGI Origin 3400 with aggregate performance

of 300MB/s is to be l:ut into production. This will bring the aggregate mass storage

throughput to our goal of 750 MB/s. This goal has been based on the TeraGrid

machine's predicted performance and the cost analysis of additional

bandwidth/throughput Jbr the mass storage system.

Now that NCSA has machines that can handle data at very high rates, and grid and user

portal environments are being deployed, improved user tools are needed to move data

from place to place. Some important deficiencies relate to inadequate descriptions of

what data are available, where the data are located, and how and under which condition

users may access the data [5]. The tools that NCSA has given our users have not

changed from some fcrm of FTP. NCSA is working on porting GRIDFTP from the

Globus group onto the UniTree server so that the FTP transfers will be in parallel to the

mass storage system. These tools are also being added to the distributed parallel file

systems as explained b_,qow. We are incorporating GRID data technologies and working

with the Globus group [6] at ANL to enable a grid environment of data being moved,

replicated, and archived for all grid users. Gridware from Globus will help users take

advantage of different data storage components with in the Grid, and aid the users in data

management issues.

5.0. Linux Clusters Storage

NCSA is looking at many different file systems that might be able to accomplish our

goals for the TeraGric machine, and one standou! is the Global Parallel File System

(GPFS) from IBM. This is the linux port of GPFS to IA32 architectures from the SP2

machines. GPFS has been running at NCSA since October 2001. GPFS has three major

components: a) the disl, server is the machine with the disks attached; b) the GPFS server

is the metadata server; and c) the individual client. A GPFS file system client must be

installed on each systeln. Each system can then see all the data. GPFS can scale up by

adding more servers and clients. GPFS can have multiple servers hosting the same file

system or individual fiie systems as needed. NCSA has tested up to 120 clients and 8

servers all seeing the szme single file system. GPFS has high availability options so that
there is fail-over for di_k servers and GPFS servers. Users interface with the native I/O

commands to the file system, and all clients can read/write to the same file system and

even the same file. Files are distributed across multiple servers by GPFS so that one user

can gain access to the _mtire GPFS file system with all servers writing data at once. The

performance does decr_ ase as expected as more I/O requests are added from there.

NCSA thinks that this is a very strong product with a very good team behind it. GPFS

relies on a very fast low latency network for good performance to be observed. Since the

changes in Myrinet dri,,er in release 1.5, GPFS made great strides in reliability. GPFS is

a file system for a single system only, there is no data sharing with other systems. A

follow-on phase of GPFS development with IBM is a mixed GPFS cluster file system.

105

The mixturewould be IA64 andIA32 clientsandserversfor a singleGPFSfile system.
NCSA wants to add the Globustoolkit to GPFS,so that parallel datatransferscanbe
used to move dataout of the linux cluster machineto other grid systemsor a mass
storage.

The chart below comparesthe performanceNCSA had with Ethernetand Myrinet.
Myrinet hasthe bestperformance. The chart also shows the performance of 2 servers

running on Myrinet. The performance that one client receives shows that the single client

can gain the entire GPFS file system pipe. The performance scales down from there.

These runs on the file system were done before several updated releases of the RedHat

kernel with significant I/O changes.

ilO zone tests GPFS

1 2 3 4 5 e 7 8 9 to 11 12 13

additional clients

The performance achieved running 4 and 8 servers and various numbers of clients is
shown in the next chart. The 4 wide servers numbers were run before tunables for the

kernel were made. The 8 wide tests have the kernel mods, but the SAN disks haven't

been tuned yet. All clients write a 256 MB file simultaneously. Neither IBM nor NCSA

is satisfied with the performance, and both are working on that part of this project.

Problems are thought to be in the 7.1 kernel. Reads for a 10 wide test of GPFS are >12

MB/s on average, and > 31MB/s for writes.

106

GPFS with 4 servers

20000

15000

m 10000

5000

10 clients 120 clients

number of clients

• write

• read

GPI'S Performance for 8 wide

m

36000
33600
31200

28800
26400
24000
21600
19200
1680O
14400
12000

9600
7200
4800
2400

0

10 20 :30 40 50 60 70 80 90 100 110 120

of machines

iwdte

• read

6.0 Conclusions

The mass storage system at NCSA has evolved over the years. It started out as a small

system with a slow irtcrconnect and evolved to a very large system with many fast

network interfaces. The supercomputer machines providing the bulk of the data to the

mass storage system have also evolved. The machines started out as one system with a

few CPU's, changing _o a few systems with many CPU's, to many machines with few

CPU's. File systems c,n the supercomputers have also changed, but users must do their

own data management. They decide where to put their data depending on their

107

applications. The interfaces for users to move data are still the rudimentary FTP tools.

NCSA is making great strides to incorporate Globus grid tools into clients and servers for

utilization of parallel data transfers, and better data management.

NCSA is adding a distributed data cache machine to its mass storage architecture to
enable more simultaneous data transfers as the TeraGrid machine is built. More data

cache machines will be added depending on how much aggregate data throughput is

needed. History has shown that NCSA's data archive is growing at almost the same rate

as the normalized CPU hours on the production machines. This is not hard to predict for

maybe a year out, but gets harder the farther out one goes. The throughput is the hardest

question. Not only do the mass storage archives need to keep up with the production

machines on the LAN, but also as GRIDs gain users the amount of data coming in/out

from production machines on the WAN will become an issue.

NCSA is looking at many different file systems to provide the best environment for our

users. GPFS from IBM is being tested and beginning a friendly user period at NCSA.

However more needs to be done to "share" data between these individual compute

islands. Moving the data to the machine an application is running on as needed is a step

in the right direction, but more needs to be done in this arena. Most of these tools today

also deal only in flat files while databases are gaining respect and speed in the

supercomputing environments.

References

1. Horst D. Simon, William T.C. Kramer, and Robert F. Lucas, "Building the

Teraflops/Petabytes Production Supercomputing Center" EuroPar '99 in Toulouse,

France, September 1999

2. Heinz Stockinger, Kurt Stockinger, Erich Schikuta, Ian Willers. "Towards a Cost

Model for Distributed and Replicated Data Stores". 9th Euromicro Workshop on Parallel

and Distributed Processing PDP 2001, Mantova, Italy, February 2001, IEEE Computer

Society Press

3. Timothy Gibson and Ethan Miller, " An Improved Long Term File Usage Prediction

Algorithm," Annual International Conference on Computer Measurement and

Performance (CMG '99), Reno, NV, December 1999

4. Joshua C Neil, "Characterizing Long Term Usage of a Mass Storage System At a

Super Computer Site", Eighteenth IEEE Symposium on Mass Storage Systems IEEE
2001

5. CODATA Committee on Data for Science and Technology, Working Group on

Archiving Scientific Data, http://www.nrf.ac.za/codata/

6. Ian Foster, Steve Tueke, Carl Kessleman, http://www.globus.org

108

The Challenges of Magnetic Recording on Tape for Data Storage

(The _One Terabyte Cartridge and Beyond)

Richard H. Dee

Storage Technology Corporation, One StorageTek Drive, Louisville CO 80028-4274

Tel: +1-303-673-3076, FAX : +1-303-673-8406, richard_dee@storagetek.com

Abstract

Operating points to acaieve Terabyte tape cartridge capacities and beyond drive both

linear and track densit es to values not perceived possible a few short years ago. The

primary contributors tc the issues related to these high capacities are the physical and

magnetic properties of the tape media itself. The total magnetic moment of the recorded

bit, driven by the magnetic coating thickness, dominates the recording process and

determines the linear recording density possible. Moving a thin tape at high speeds and

the mechanical stability in the cross track direction provide engineering challenges for

increasing track densiti,_s in combination with many parallel channels for high data rates.

These issues and trade offs are the main focus of this paper.

1. Introduction

Storing and retrieving data on magnetic tape is driven by (a) capacity (Gbytes/cartridge)

primarily because of the cost of storage ($/Gbytet, (b) data rate (Mbytes/second) as

people don't want to wait forever and (c) reliability (the data has to be there!). This paper

complements the presentations given by Ted Schuarz in past years [1-2] with a little

more technical depth. The capacity of a tape cartridge is simply the areal density of the

data multiplied by the _rea of the media used but is often preferably computed in tape by

using the relation

NbLE
C-- ...(1)

8

in bytes, where N is the number of tracks across the tape, b is the linear recording density

in bits per inch, L is the length of the tape (in inches) and eis a formatting/ECC overhead

efficiency factor (typically about 0.7). The 8 assumes 8 bit bytes. The date rate is given

by

nbVe
D- ... (2)

8

in bytes/second, where n is the number of parallel channels used and V is the speed of the

tape (in inches/second_. These two relations capture the main parameters in increasing

capacities to terabyte levels and data rates to l O0's of Mbytes/sec. The linear density (b)

appears in both calculations and thus is a strong contributor to the problem. The number

of tracks (N) in the capacity and number of channels (n) in the data rate are parameters

that may be in conflict when radically increased as _ill be discussed later.

109

Capacity (TB) 0.5 0.5

Data Rate (MBIsec) 60 120

No. of PII Data Channels, n 16 32

No. of Data Tracks, N 768 768

Trk. Pitch (gm) 14.0 14.0

Channel Pitch, Cp (pm) 109

Rd. Track Width (pm) 7.0 7.0

Tape Speed, V (m/s) 4.8 4.8

-Bit Density (kbpi) 224

Track Density (tpi) 1812

Areal Density (Gb/in 2) 0.41

Bit Cell (nm) i14

Bit Cell (ns) 23.7

Write Eq. Pulse (nS) 9.5

Tape Length (m) 865

Write Time per Cart. (min) 144

1 1 5 5 10

1°1

41 o 1
2.6 |

110 220 150 300 280

16 32 16 32 16

1344 1344 4750 4750 4140

8.0 8.0 2.3 2.3 2.6
1091_1 1091_i 109
4.o 4.oI 1.111
8.0 8.0I 9.011 9.011moll 10,01

224 248 248

1812 3172 3172

0.41 0.79 0.79

114 103 103

23.7 12.9 12.9

9.5 5.2 5.2

865 865 865

72 152 76

298 298 500 500

11211 11211 9771 9771

3.35 3.35 4.89 4.89

85 851 11 1
9.5 9.5 5.1 5.1

I 3.811 3.81V-':ZlV-':-_
1000 1000 1400 1400

550 275 604 302

Table 1. Terabyte operating points

Table 1 shows scenarios for a 0.5, 1, 5 and l0 Terabyte capacities for various data rates

for a normal IBM3480/STK9840/LTO/DLT '/2 inch wide tape cartridge form factor.

Some tradeoffs between the parameters given in equations 1 and 2 have been included for

illustrative purposes and one can easily see where a different set of trade offs could yield

the same result depending on which aspect of the tape system you wished to stress more.

The stress points are boxed for the cases shown and it is these challenges that are

discussed below in relation to the media aspects, the heads and the channel in order to

accomplish these operating points.

2. Magnetic Recording

Figure 1 shows a block diagram of a tape recording system from data in from a host

computer channel, onto and off the tape and back to the host upon a data read [3]. This

figure summarizes the main components and systems needed for the tape system to

function. All the subsystems (write method, read equalization and detection, servo, head

I Decoding, ECC&De-format

Figure 1. Block diagram of a tape recording

system

and tape handling) serve to deal

with the unique properties of the

tape media itself. This is from

both a magnetic and mechanical

perspective. The media dictates

how the rest of the system is

designed in order to achieve

high-density data recording and
thus is the main contributor to

limitations thereto.

Fundamental to recording

digital data on magnetic tape is

the analog magnetic recording

that takes place between the

ll0

Data 1 0 1 1 1 0 1

11 R I1 I1 n

Magnetic -__
Recording

_ __A _,
Read Voltage -_f V

Clock

Recovered Data 1 (b 1 1 1 0 1

Figure 2. Magnetic Recording

head and the media. These two

magnetic components in
combination can make or break

a reliable data recording system.

Figures 2 illustrates magnetic

recording on tape and its digital

interpretation. The digital

interpretation is that a transition

between a region on the tape

magnetized in one direction to

the opposite direction is

interpreted as a logical '1' and

the absence of the transition a

'0' when referenced to a data

clock. This interpretation

depends on the logic used by

the detection system and coding

design. For instance a PRML

channel (Partial Response

Maximum Likelihood) interprets the recorded transitions in a different way by partial

amplitude sampling in order to increase the bit density using somewhat lower magnetic

transition densities thin in straight peak detect channels as illustrated. Such channels

increase the logical bit density up to twice that of the recorded magnetic transition

density.

3. Recording Technol,)gy Challenges

Fundamentally, an increase in linear recording density requires the transitions to be closer

and closer together on the media and the ability to resolve them. Table 1 indicates the

length of a logical bit _bit cell (nm)) for the various scenarios given for reference (-50 -

100nm). Tape media 1o date has had the magnetic coating somewhat thick (0.5_m or

more) compared to th_se dimensions which gives broad written transitions due to the

generation of transitions curving into the depth of the magnetic coating and the

demagnetizing effect of sizeable opposing magnetic poles. These effects are summarized

in the equation for the ransition length parameter (the 'a' parameter) thus:

... (3)

where Mr is the reman,mt magnetic moment of the medium, tithe magnetic thickness, Hc

the magnetic coercivity of the medium, and d the head to tape spacing. This relation

comes from assuming that the transition follows and arctangent function shape [4]. In

order to reduce this transition length parameter the ratio M,_Hc must be reduced. This

can be done either by iacreasing the coercivity, He, which physically means it is harder to

push the magnetized regions apart or by reducing the medium thickness, 6, which lowers

the total magnetic moment and hence the force which is pushing the regions apart.

lll

Reducing Mr is a little more difficult using iron particles (as currently used in MP tape),

as this would mean reducing the number of particles in the magnetic coating, which

would have the side effect of reducing the signal-to-noise ratio (SNR). An acceptable

reduction in Mr could only come from a different particle; for example barium ferrite

(BaFe) or a different media construct (such as thin film media). The coercivity of tapes is

in fact on the upswing with prototype MP media pushing 2500 Oe compared with today's

1650 Oe 9840 media and 1850 Oe DLT/LTO media. Figure 3 shows how linear density

has indeed gated tape products in the past according to media coercivity together with a

projection for future systems based on published roadmaps. (The data here are taken from

existing IBM, STK, Quantum DLT and LTO tape products). Excessive increases in

coercivity would however begin to challenge the available magnetic pole materials used

in the write head where the saturation flux density is limited. This would eventually

degrade recording performance if the coercivity increases much beyond 3500-4000 Oe.

300

kbpi

250

200

150

Metal 2700 (Oe)?

MP4 2400 (Oe)?

MP2 1850 (Oe)

100
MP1 1650 (Oe)

4)

50

Fe20] 350(_e)
, , ,

1970 1975

CrO 2 650(0e) • •

1980 1985 1990 1995 2000 2005
Year trends.xls

2010

Figure 3. Linear density versus year for linear tape systems

Reducing the thickness is the primary direction to pursue and recently this has been

achieved in particulate media by using a dual coating process. Here the magnetic portion

of the tape coating is spread thinly over a simultaneously coated non-magnetic under

layer. This effectively provides a thick physical coating for smoothing purposes coupled

with a reduced thickness magnetic layer as illustrated in figure 4. This has enabled

coatings to be produced as low as 100nm and progress is being made to reduce this

further [5]. This technique, however, will eventually run out of steam for the particle in

binder tape medium concept. One quickly gets to very few 20-30nm thick particles

stacked on top of one another in a < 100nm coating with the resultant SNR reduction. For

areal densities greater than a few Gb/in 2 , the move to thin film media will have to be

112

 Backcoat
Substrate

Underlayer
\Magnetic Layer

Figure 4. Diagram Cf a cross section of dual coat

tape recording media

made as it was for magnetic

disk. (Tape is indeed fortunate

that magnetic disk has already

demonstrated solutions to high

areal density magnetic

recording.)

The other parameter that figures

into the areal density is track

density. Again the number of

particles contained within the

bit becomes squeezed as the

track narrows. As the SNR is

related to the total number of

particles contained in the bit

volume [4] an estimate for the

areal density limit, A.,_, for metal particle tape can be made from an SNR standpoint and

input from media producers on what might be the maximum particle density (smallest

thermally stable disper,_ible particle). Following Mallinson [4] it can be shown that

I

Ali m = t 2

1

2 pSNR3) _ ... (4)

where t is the track density, p the magnetic particle density in the media and SNR is the

signal-to-noise ratio requirement. Using for example 3000 tracks/cm (7620tpi), 1017

particles/cm and 20dB we get an areal density of approximately 10Gb/in 2. This assumes

that the whole written track is read, no spacing loss and one logical bit per transition.

Using a write wide read narrow scenario, as linear tape currently does, and invoking a

PRML channel you come out with a very similar number or maybe slightly higher

depending on the SNR and desired raw bit error rate. (PRML channels operate at lower

effective SNR values.) The areal densities in the cases shown in Table 1 approach

5Gb/sq.in. and the question arises as to how close to the computed limit can you engineer

particulate media for tl"is, or is thin film media prompted as it was in disk.

The other main pararreter in equation 3 is d, the head to medium spacing. This also

figures heavily into th_ wavelength response upon read back. Loss of resolution of the
shortest wavelengths is severe (e- d, where k is the wave number) and the resultant signal

loss is normally given in dB form by the relation [6]

,4
Loss =-54.6 _ dB ... (5)

2

In combination with spacing on write, the multiplier in equation 5 (-54.6) is closer to

-100! Although we rul_ the tape in physical contact with the head, the 'magnetic' spacing

seen is due to media r, mghness, recession of the magnetic elements in the head and any

113

adherent(or temporary)debrisor stains on the head. Current systems appear to have up

to 70nm of magnetic spacing while in apparent physical contact and this will have to

come down if we want to resolve high density terabyte recordings and not suffer the

resulting loss in signal amplitude and resolution.

Head technology appears to have enough precedents and product introductions (again as

seen in disk magnetic recording) that tape head offerings should be able to readily

respond to new media types as they are developed. A classic example would be the shift

to all thin film write heads and thin film shielded read heads as well as merged

pole/shared shield structures commonly used in disk and now being seen in tape

applications. Examples are shown in figure 5. The main issues facing the tape head

Figure 5. Diagrams of thin film tape head types showing thin

film write, MR read and combination shared shield devices

concern the consequences of using multiple channels simultaneously in read-while-write

mode. I.e., direct write to read feed through and read element off-track due to tape static

and dynamic azimuth. A future example of disk like technology for tape would be the

introduction of the GMR spin valve read sensor now prevalent in desktop systems in disk

drives. This would be predicated by the availability of a suitable media that would be

compatible with high-density recordings and these very sensitive devices, as well as

environmental issues seen in tape usage. Alternatively, new designs of spin valve sensors

customized for tape could be used with the still somewhat higher Mr6 values that may

persist. The switch to spin valves will be driven by the need for raw signal amplitude to

overcome the unique noise sources in the multi-channel read-while-write tape

environment (such as write-to-read feedthrough) as the read element width and hence

signal amplitude is reduced.

Another issue raised in Table 1 is the time scale of the recording. For high bpi and fast

tape speeds, the bit cell time is reduced to <10nS. If write equalization persists as a

favorable recording method (which it will if the Mrdis not reduced significantly) then the

recording system (write current, write head magnetics and media magnetization) will

have to respond on the lnS time scale. For a 3nS write equalization pulse the media has

to see the field at least 2nS of that time to stand a chance of responding. Figure 6 shows

how magnetic media (in this case MP1 media) changes its effective coercivity for fields

114

2000 -

1900

1800

4700

1600

1500

Media Coerclvlty vs Time Scale

10 100 1000 10000

Time (nS)

Figure 6. Coercivity of MP tape versus time

scale of the applied magnetic field.

applied at very short times.

The rise in coercivity means

that we would have to

overdrive the system to affect

the recording in the required

way presuming that the head

magnetic core can provide the

specified field in response to

the drive current. The issue of

getting the drive current into an
inductive load like a write head

exacerbates the problems in a

multi-element tape head where

stray capacitance paths can
shunt the coil current. Core

materials for the head appear to

be available to provide this

response and current production head types such as the StorageTek T9840B write head

have demonstrated good performance down to 10nS Data for this is shown in figure 7 for

such a write head, whk h uses cobalt based amorphous alloy poles.

1.2

0.8

O

0.6
m.

O
Z 0.4

0,2

-_- Output

Efficiency

-A- Efficiency*

1 10 100 1000
wvs xls

Pulse Length (nS)

Figure 7. Head efficiency and readback output

vs. write pulse length

This data shows that the read

back amplitude remains the

same when the pulse length is
reduced and that the head

efficiency does not roll off

significantly. The two

efficiency curves represent the

directly measured head

efficiency and the head

efficiency corrected for the

media coercivity shift

according to figure 4 (this

curve is indicated with an *).

These time scale issues are not

at any fundamental limits

imposed by the laws of physics

but provide the engineer with

interesting challenges. The

particulate and metal based tape media respond at l nS and I think operating near l nS will

be avoided in any case with the eventual elimination of write equalization.

4. Mechanical Issues

The tape speeds used in Table 1, for the high data rates, provide the tape path and motion

control with some chailenges. This is especially so considering the tape lengths needed

for the capacities which in turn means the tape thickness needed for the cartridge size

115

approaches51Ltm(or evena little thinner). This thickness(or ratherthinness)meansa
relatively low tape tensionwith which to achievethesespeedswith adequatelateral
guiding and tapepack management.On top of this, the bandwidthof a track following
servosystemwouldhaveto increasetogetherwith its capabilityto achievethetrackpitch
targets. Again, no real fundamentallimits here, just a solid engineeringproblem.
Unfortunately, these factors get much less attention than the more intuitive limits
imposedon track densityby the dimensionalstability of the mediaitself. Very narrow
tracks,coupledwith multi-channelheadsthat spana significantportionof thewidth of
the tape,result in track mis-registration(TMR) numbersthat imply roadblocksbeyond
mereelectronics.Thereis an interestingtradeoff betweendatarateandcapacitythatcan
bemadeasoutlined in the 1998NSIC taperoadmap[7]. Given a fixed tape lengthand
achievablelinear recordingdensity, capacitycan only be increasedby increasingthe
track density (narrowertracks).This meansthe allowableoff-track capability (OTC) is
reduced.For higherdataratestheonly adjustableparameter,oncethetapespeedis set,is
thenumberof parallelchannelsin thehead.Themorechannelssideby sidethewider the
spanacrossthe tapeand more likely the end tracks will exceedthe OTC as the tape
dimensionschangewith time, tension,temperatureand humidity. The resultsof the
calculationof this tradeoff is formulatedas

D = 2(OT)LWVbZe2

64Cc p m c
... (6)

Data Rate/CapacRy Tradeoff

(,or,,..c,=so,m.2oo,bp,,12mm,,,..10_o_ where OT is the allowable off-
1 OOO

track expressed as a fraction of
900 IMed_a'°s"b'"'YJ the track width, W the width of
800 + 250ppm]

-.-_o0_ I the tape, C the capacity of the
_oo + Iooopp_m

®-_8oo cartridge, cp the channel pitch in
z

soo the head and mc the media

_oo instability coefficient. Figure 8
_oo shows the situation for various

2o0 media stability numbers (from

_oo ref. 7) and is considered

0 somewhat optimistic as it
0 5 10 15 20 25 30

c.p.o._(T,._ooo_of_._ considers only writing the
tracks in the correct location

and not any read-while-write orFigure 8. Data Rate/Capacity trade off for a
realistic read back scenarios.

linear tape system.
Also current feedback from

media suppliers is that the

stability numbers will probably not improve as significantly as suggested here anytime

soon. The implications of this chart are simple to interpret. If you want very high

capacity, i.e., very narrow tracks, the number of parallel channels laid side by side will

have to be reduced, lowering the possible data rate.

116

The only way around_hisis to changethe way we parallelup headstacksto avoid the
excessiveheadspano5changein someotherway we lay dataon tape.SuperDLT and
helical systemsfor instanceusedual azimuthrecordingon adjacenttracks allowing a
largerOTC. This is one reasonthe arealdensitydemonstratedby helical scansystems
(e.g.SONY) alreadye:_ceedsthat projectedfor linearsystems.Helical technologyusesa
singlechannelor few-hannels approach,high head-tapeinterfacespeeds,dual azimuth
and short lengthtrack,.,which circumventthesemediarelatedproblems.Unfortunately
helical technologyhassufferedheadand mediawear problemsandthereis a perception
of poorerreliability comparedto linearsystems,thebasisfor which is somewhatclouded.
Thechallengefor themulti-channellinearheadhereis the reducedchannelpitch. 501am
as indicatedin Table 1 is certainly achievable, but beyond that, a new approach over

Figure 9. Example of a multi-channel, side-by-side architecture, thin film tape

write head as used in today's linear tape heads [3]

today's norm (figure % is expected.

Finally, figure 10 summarizes the areal density progress and trend extension for linear

tape based on past and present systems and published roadmaps. As mentioned before,

heads and media in combination are the primary drivers for this parameter. The coercivity

rise from oxide tapes t.) MP tapes and in the future lhinly coated particulate or metal film

tapes have been responded to by heads moving from ferrites to thin films and high

moment thin films to eerite these tapes. This is in conjunction with MR and eventually

GMR read heads to deliver appropriate signal quality. Also shown is the SONY helical

6.5 Gb/in 2 demonstration on metal evaporated (ME) tape and subsequent 16.4 Gb/in z

point using spin valve leads [8], and the estimated MP limit using today's assumptions.

5. Conclusions

It is clear that the medium has a significant if not the primary impact on the density

growth in magnetic tape recording. As demonstrated by disk magnetic recording the Mr8

has to be reduced in _rder to increase the linear density. Significant reduction in this

parameter would allow closely spaced magnetic transitions and enable the use of more

sensitive read head ser sors such as spin valves to boost the sagging raw signal amplitude

as both the bpi and tpi increase. Calculating a limit tbr MP tape throws down the gauntlet

for media, head and c[annel developers to counter 1his, as was seen recently in magnetic

117

disk. There the arealdensitylimit wascalculatedto be 36Gb/in2 in 1997[9], which is
nowexceededin today'snormalproductiondiskdrives!

100.000

Gblin 2

10.000

1.000

0.100

0.010

0.001

0.0001

1970

(Thin Film Media/

GMR Heads)
/

i/

J MP
I

SONY Helical Demos • / Limit?
II

• t

NSIC Roadmap 1998-" ,"

A*" MP Media I
• 7 FullThin Film

i-

• i -1

....... Oxide Media / Ferrite Based Heads

Jl_'" i

1980 1990 2000 2010 2020
trends.xls

Year

Figure 10. Areal density trends in linear tape systems

Increasing the data rate by increasing the number of parallel channels involves trade offs

with tpi (i.e. capacity) if we remain with the side-by-side head stack architecture due to

the increasing span of the active channels across flexible media, which is accepted as

having somewhat poor dimensional stability. Head technology appears to be available to

meet the challenge of the multi-terabyte capacity cartridge but this target is gated by

media type and availability, and overcoming the engineering challenges of handling the

magnetic and physical properties of the media. Tape is not nearing any fundamental

scientific limits as seen in magnetic disk. Given the rather moderate areal densities

currently seen in tape systems and optimism with regard to the development of tapes with

thinner magnetic coatings, data storage systems using tape are poised to make some rapid

advances in capacity and data rate.

6. References

[1] "Magnetic tape as the mass storage medium". T, Schwarz, Mass Storage Conference

(2000).

[2] "The future o1' magnetic tape", T.Schwarz, Mass Storage Conference (2001).

[3] "Magnetic Tape Recording Technology and Devices", R. H. Dee, Proc. Int'l Non-

Volatile Mem. Tech. Conf. pp55-64 (1998). (IEEE Cat. No. 98EX141).

[4] "'The Foundations of Magnetic Recording", J. C. Mallinson, (Second Ed.), Academic

Press (1993).

118

[5] "Investigation of p_rticulate media with an ultra--thin magnetic layer suitable for MR

heads on a rotating drum" K. Ejiri et al, IEEE Trans. Magn. Vol.37, No. 4, pp1605-

1607 (2001) and Fuji Film press release on 'Nano Cubic Technology'

www.fujifilm.com (2001).

[6] "The reproduction of magnetically recorded signals", R. L. Wallace Jr., Bell Syst.

Tech J. vol.30, 114'; (1951). See also Ref. 2 p.88

[7] "Tape Roadmap", ix ational Storage Industry Consortium (June, 1998).

[8] "Beyond 6.5Gbit/inch 2 recording using spin valve heads in tape systems", T. Ozue et

al (SONY), Proc. T VIRC Conf., Minneapolis, MN (Aug, 2001).

[9] "Thermal stability c f recorded information at high densities", S. Charap, P.Lu and

Y.Lee, IEEE Trans. Magn. Vol. 33, No. 1, pp. 978-983 (1997).

119

Efficieat RAID Disk Scheduling on Smart Disks

Tai-Sheng Chang

tchang@cs, amn.edu
Tel: +1-847-856-8074

Department of Comlmter Science and

Engineering,

University of Minnesota
200 Union Street SE #4-192

Minneapolis]VlN 55455

David H.C. Du

du@cs.umn.edu
Tel: + 1-612-625-2560

Department of Computer Science and

Engineering,

University of Minnesota
200 Union Street SE #4-192

Minneapolis MN 55455

1. Introduction

With the emerging high-performance storage systems as well as the availability of faster

processors and high-speed networks, many applications that were only dreams a few

years ago, have becorae reality. For example, Digital Libraries and Digital Medical

Imaging Archive Systems have become available today. Many of these new applications

are making great impacts on the way we work and the way we live. Among the

supporting technologie:;, a high-performance storage system is one of the most critical

factors in these systems.

RAID (Redundant Array of Independent Disks) has been playing a very important role in

supporting high performance storage systems. It exists in storage systems ranging from

one with a couple disks to those with several terabytes capacity. RAID uses data striping

and parity information to provide higher I/O throughput on large data access and fault

tolerance against disk tailure. The implementation of RAID systems can be categorized

into two different grougs. The first category is the hardware RAID that uses additional

RAID controllers to manage and process most of the required tasks in a RAID system.

Those tasks include data parity computation and volume management. The other category

of RAID uses the ex:sting CPU(s) and memory on the system instead for all the

necessary tasks (as opposed to the hardware RAID solution, we call it software RAID).

From a user's point ot" view, hardware RAID solutions require RAID controllers and

increase the costs of a system; On the other hand, Software RAID solutions consume

CPU and memory resource when performing RAID operations. Therefore, the

applications running on the same hosts where the software RAID resides will suffer

performance degradation.

Fortunately, there is a new technology that provides an alternative solution between the

expensive Hardware]LAID solutions and the poorer performing Software RAID

solutions. This new technology is called Disk-Based XOR. Disk-Based XOR is a

technology utilizing the capability of computation on disks. By calculating the XOR

results on disks, the C'U resource is no longer required for the computation-intensive

XOR computation in RAID systems. Another big advantage of the Disk-Based XOR

approaches is that the data amount needs to be transferred on storage channel can be

greatly reduced by as much as 50%. With traditional RAID's, both old data and old parity

121

datahaveto besentto thehostor aRAID controllerfor newparity construction.Thenew
dataand the new parity will be then transferredback to the targetdatadisk and parity
disk, respectively. On thecontrary,in a Disk-BasedXOR RAID, only the newdataand
the XOR resultsof the newandold datawill be transferred.Therefore,with Disk-Based
XOR, up to twice as many disks could be connectedto a storagechannelwithout
saturationunderthesimilar load.This advantagehasbeenprovedwith simulationresults
in anearlierstudy.

However, there are challengesin implementinga Disk-BasedXOR RAID system.
BecauseXOR calculationsof thenew andold datawill beexecutedon thedatadisk and
the resultsneedto be transferredto theparity disk, theresultshaveto be savedon data
diskbeforetheresultshavebeentransferredsuccessfullyto theparitydisk. It mayhavea
big impacton performance.Researchershavefound a potential deadlocksituationwith
traditional single-threadedexecutionsof SCSIcommandsin Disk-BasedXOR RAID's.
Someresearchersproposeda differentRAID parity placementon disksto avoid sucha
problem.Anotherresearchshowedthedeadlockcouldbeavoidedwith asmallchangeon
the FC-AL protocol. A multi-threadedSCSI commandexecutionapproachhas been
proposednot only to resolvethedeadlockproblembutalsoimprovediskefficiency.The
approachusesa conditionally prioritized disk commandqueueto resolvethe deadlock
problem.Simulationresultswereshownthatsuchanapproachoutperformedahost-based
RAID.

While theproposedmulti-threadedXOR approachseemspromising,it doesraiseanother
issue: The proposedconditionally prioritized disk commandqueue executionmay
conflict with diskschedulingdisciplinedesignedto optimizediskefficiency.Theconflict
is dueto the fact that freecachesegmentsmaynot bealwaysavailablefor the nextnew
read-modify-writecommand.In suchacase,oneof theothercommandswill beexecuted
next instead.As aresult,adiskmaynot executecommandsasefficiently asit couldhave
been. In this paper, we will investigatethe performanceimpact of such scheduling
conflict andproposetwo newdiskschedulingalgorithms.

We choosea populardisk scheduling,ShortestServiceTime First (or SSTF)asthebase
line for comparison.This method hasbeen widely used and shown as having good
performancein a dynamicenvironmentwherecommandsarearriving over time. In this
paper,we call the SSTFschedulinga GreedyAlgorithm. In this scheduling,eachdisk
choosesthe commandwith the shortestservicetime (seektime plus latencytime) to be
the next command.In the casewhenavailablecachesegmentsarenot enoughfor next
read-modify-writeoperation, the command with the shortest service time among the other

commands will be chosen. This is the same as in the proposed multi-threaded approach

by other researchers in their study. The only difference is that in this paper, SSTF

scheduling discipline will be used to choose from the list of executable commands. When

no other commands are in the disk queue, a disk will be forced idle.

Two reasons may cause disk cache to build-up. The first is due to congested data links.

When the disks are putting data to cache faster than cache can transfer data to the storage

channel, the cache will be filled. This could happen when too many disks are connected

to a single storage channel. This situation can be easily avoided with proper sizing when

122

configuring a systemif the traffic load can be realized. In Disk-BasedXOR, there is
anotherpossiblecause.Disk cachesegmentsfilled with XOR resultsneedto beprotected
until the associatedptrity update is completed.Dependingon the disk scheduling
discipline,a parityupdatecommandmaytakea longtime waiting in diskqueuebeforeit
hasbeenexecuted.The longerthe waiting time is, the longer time the associatedcache
segmentson the targetdisk remainsto be savedandprotectedfrom beingusedby other
commands.Our proposedapproacheswill intendto reducethewaiting time of theparity
updates.

The restof thispaperi_;organizedasthefollowing. In Section2, wewill providea more
detaileddescriptionof Disk-BasedXOR operations.In Section3,wewill alsodescribein
details the Greedy di,k schedulingdiscipline and those two new enhancements.In
Section4, wewill presentour simulationresultsto showthe performanceof thosethree
disk schedulingdisciplinesfollowing an overviewof our simulationmodel. Finally in
Section5, wewill summarizewhatwe foundin this studyandconcludethepaper.

2. Disk-BasedXOR andItsOperations

Threenew SCSI commands(see[1]) havebeencreatedfor supportingthe Disk-Based
XOR implementation."['hey are XD-write (or XDW), XP-write (or XPW), and XD-write

extend (or XDW-ext). Each XDW is always associated with one XPW command. An

XDW command consists of four operations. To begin, data (old data) will be read from

target disk to its disk buffer (disk cache). At the same time, new data will be sending

from the host to the target data disk. When both new and old data become available on

disk buffer, exclusive-or operations will be executed on the new and old data. The new

data will be written onlo the disk. The results of the XOR operations, on the other hand,

will remain on the disk buffer for later use by the associated XPW. The results need to be

saved and protected on the disk buffer from being o'_erwritten by other operations. Figure

1 shows an XDW operation.

Host Data Disk Drive

New Data

Figure l: XDW Operation

After an XDW command is completed, the associated XPW command will be sent to the

associated parity disk. The old parity will be read from the disk medium. At the same

time, the XOR results of the associated XDW command stored earlier on the target data

disk will be sent to th,_ parity disk. When the XOR results and old parity information

123

become available, XOR operations will be executed. The newly derived XOR results will

be written onto the parity disk. After the XPW has completed, the disk buffer storing the

XOR results saved on the target data disk by the associated XDW will be freed. Figure 2

shows the operations of an XPW command.

Host Data Disk Drive

XOR res

Parity Disk Drive

Figure 2: An XPW Operation

An XDW-ext command is a macro command that consists of one or more XDW

commands followed by the associated XPW command(s). A read-modify-write operation

on a data block can be fulfilled by an XDW-ext command.

One big advantage of the Disk-Based XOR approach is that the data amount being

transferred on storage channel can be greatly reduced by as much as 50%. With the

traditional RAID's (either hardware or software RAID's), both old data and old parity

data have to be firstly sent to the host or a RAID controller to construct the new parity

data. The new data and the newly derived parity data will be transferred back to the target

data disk and parity disk, respectively. In other words, if we need to update a block of

data, there will be four blocks of data that are required to be transferred from and to the

disks. As opposed to the traditional RAID's, in a Disk-Based XOR RAID it only needs to

transfer the new data and the XOR results of the XDW on the storage channel. Therefore,

with Disk-Based XOR, a larger number of disks can be connected to a storage channel

before saturating it with the same disk load.

3. Two XPW-Enhanced Disk Scheduling Disciplines

Many disk scheduling disciplines have been proposed to improve disk efficiency. For

example, SCAN and C-SCAN ([2]) were proposed to reduce the seek time without

moving back and forth from one request to another. Some other approaches considered to

reduce both seek time and rotation latency (i.e. disk service time). Shortest Service Time

124

First (SSTF) is one of_hose approaches and has been widely used as the disk scheduling

discipline.

Before RAID was first introduced, disks operated individually and independently. There

was no correlation between any two operations on different disks in terms of their access

location on disks. RAI _) changed such independency. Updating a data block on one disk

in a RAID will result n updating the associated parity block that has the same Logical

Block Address (LBA) as the data blocks but resides on a different disk (parity disk).

However, most disks in a RAID (except RAID-3) are still operating independently

without coordination between disks. That is, reading the old data from a disk is

performed independenlly with the reading of the associated old parity data from another

disk. Because the new parity data is constructed by the old data, old parity data and the

new data, intermediate results must be saved before both the old data and old parity are

available. Without collaboration, the retrievals of the old data and old parity will be

scheduled independently on two disks. As a result, the intermediate results may have to

be saved for a long period of time. That is why most of the RAID systems require a large

amount of memory eitl" er on the RAID controller or on the host.

Such a big memory requirement is impractical in a Disk-Based XOR RAID. With a very

limited buffer space oa most disks, disk buffer can be filled quickly with Disk-Based

XOR operations. When the disk buffer is full, no more commands will be executed until

some buffer becomes _tvailable. A more severe condition is that a deadlock may happen

when the buffer is full in Disk-Based XOR. That is why in [3], the proposed conditional

prioritized disk scheduling forced a disk to choose a command other than XDW-ext after

the occupancy of the disk buffer is higher than a predefined threshold. However, such an

alternation on the disk scheduling will have an impact on the disk efficiency. The disk

efficiency could be much lower when choosing a sub-optimal command.

In the following, we will introduce two XDW-enhanced algorithms. Both of them are

intended to reduce the probability of being required to make a dramatic change on disk

scheduling. As for a baseline comparison, we use a greedy algorithm with the SSTF

scheduling. The discu_;sion of this Greedy scheduling approach is also included in the

following sections.

3.1 Greedy Disk Scheduling

The Greedy algorithm chooses the command with the shortest service time (seek time

plus latency time) to be the next command to be executed. This method has been widely

used and performs wel_ in dynamic environment where commands are arriving over time.

We use this method as a baseline for comparison purpose.

Because cache may b,: filled in Disk-Base XOR as discussed in the previous section,

some modification is needed when applying the Greedy method to Disk-Based XOR

RAID's. Each XDW-cxt command requires at leasl two segments of cache to store data;

one for the old data from disk and another for the new data from the host (assuming

request data size is less than or equal to the segment size). Hence, we need at least two

125

segmentsof freecachespacein orderto startexecutionof anXDW-ext command.When
thenumberof availablecachesegmentsis smallenoughfor thenextXPW-ext command,
wechangethe GreedyAlgorithm andchoosethecommandwith theshortestservicetime
from commandsotherthanXDW-ext commands.Themodifiedgreedymethodis usedin
thispaperasaperformancebaselineto comparewith theproposed(two) enhancements.

As discussedin theprevioussection,onedrawbackof the Greedymethodin Disk-Based
XOR is that when it is running out of free cachespace,it has to pick a sub-optimal
command,or evenworse, stay idle. In a casewhen there is no commandother than
XDW-ext in the disk queue,the disk hasto stay idle until either a new non-XDW-ext
commandarrivesor somecachespaceis freed.

One straight forward way to reducesuch inefficiency is to preventit from happening.
Therearetwo reasonscausingthecacheto backup.The first is dueto a congestedlink.
Whenthedisksareputtingdatato cachefasterthancachecantransferdatato thestorage
channel,thecachewill be filled. This couldhappenwhentoo manydisksareconnected
to a singlestoragechannel.This problemmaybe eliminatedwith propersystemsizing
whenconfiguringasystem.

In Disk-BaseXOR, thereis anotherpossibility.That is whenthe numberof outstanding
XDW-ext commandsona disk is closeto thenumberof cachesegments.An outstanding
XDW-ext commandis anXDW-ext commandfinishing its XDW partbut waiting for its
XPW part to be completeon anotherdisk. Dependingon thedisk schedulingdiscipline,
anXPW commandmaytakea longtime waiting in disk queuebeforeit is executed.The
longerthewait time, the longer thecachesegmenton thedatadiskneedsto besavedand
protectedfrom beingusedby othercommands.

After understandingthe causeof a long-waiting outstandingXDW-ext command,we
proposedtwo approachesto reducethe possibility of filled cachein Disk-BasedXOR
RAID's. Thedetailsarein thenext two subsections.

3.2An XPW ServiceTime BasedPromotionScheme(XPWT)

The first approachis to selectivelygive an XPW the higher priority. By giving XPW
commandshigherpriority, it helpsto reduceits wait time in disk queueandasa result,
theassociatedXDW-ext commandcanbecompletedandreleasethe cachespaceit used
earlier. However, selectingXPW should be made with caution such that the disk
efficiency will not be over-compromised.We usea relative differencein disk service
time as the criteria to give an XPW the higherpriority. Whenan XPW has lessthan
smallestservicetimeplus thepredeterminedtime 5 available,theXPW with the smallest
servicetimewill begiventhehighestpriority andwill beexecutednext.

We formulatetheapproachproposedabovein thefollowing.

126

Let CAll mm be the command with the shortest service time TAIl m'n

Let CxPw m'n be the XPW command with the shortest service time

among XPW corn hands TxPw m'n.

If TxPw min TAIl rnm <= _5 then choose CxPw m'n

command.

Otherwise choose CAll ram.

to be the next

Note that when _5equal to zero, this approach degenerates to the Greedy Algorithm. On

the other hand, when 6 becomes a large number, XPW commands will be given the

higher priority all the ' ime. For example, when 8 is greater than or equal to the largest

possible disk service time, the above method will ahvays give the higher priority to XPW
commands.

3.3 An XPW Queue Length Based Promotion Scheme (XPWQ)

The performance of the' previous approach highly depends on the value of _5.Choosing a

large _5 may result in lower disk efficiency but reduce the number of XPW's in disk

queue; while choosing a small 8 makes it closer to the Greedy Algorithm. Therefore, the

optimal value of 8 is difficult to determine in a dynamic situation. The second approach

we are proposing in this paper is to give XPW commands the higher priority when the
number of XPW commands on a disk reaches a certain threshold. The idea is based on

the fact that with a uniformly distributed access among disks in a RAID and a large

number of XPW commands in one disk queue, the more occupied disk cache will be on

the other disks. Therefore, choosing an XPW to execute will likely help in releasing the

disk cache buffer on another disk. Furthermore, when the threshold is chosen properly,

there will be a set of X PW commands in disk queue to choose from when the number of

occupied cache segments reaches the threshold. The larger the number of XPW
commands to choose from, the closer the chosen XPW command to the optimal

command. The detailec lbrmulation of this approach is provided in the following.

Let MaxNxpw lze the threshold value of the number of XPW

commands.

Let Nxpw be the number of XPW commands in a disk command

queue.

IfNxpw <= maxNxpw then follow the Greedy Algorithm.

Otherwise, pick tae XPW command with the shortest service time
of all XPW's.

Note that when the valae ofmaxNxpw is set to zero, this approach will always choose an

XPW if one exists. On the other hand, when the value of maxNxpw is set to infinity, then

this approach will not give XPW a special higher priority at any case. Therefore it will

degenerate to the Greedy Method.

127

4. SimulationModel andResults

In this section,we will usesimulationresultsto demonstratetheperformancedifference
of the three disk-schedulingdisciplinesdiscussedin the previous section.For better
understandingof the simulationresults,we first providean overviewof our simulation
modelsin thefollowing subsection.

4.1SimulationModel

We used a storagesubsystemsimulation model to simulate operationsof a storage
subsystembasedon the Fibre Channel- Arbitration Loop (FC-AL) ([5]) protocol. The
model consistsof three major components:A disk and its disk cachecomponent;A
storageinterface componentthat follows FC-AL protocol and controls data transfers
to/from the storagechannel;And a commandgeneratorcomponentthat simulatesa host
generatingdatarequests.

4.1.1Disk andDisk CacheModel

The disk model is basedon an IBM UltrastarXP 4.51GBdisk. The implementationof
this disk modelemployszonebit recordingandnon-linearseektime functionsfor read
andwrite operationsusing informationfrom thediskmanufacturein [6]. Table 1showsa
summaryof diskparametersusedin thesimulation.

Table1:Disk Parameters
Disk Parameters Value

Capacity
RotationSpeed

Averagerotationlatency
Seektimes

4.51GB
7202.7RPM
4.17ms
0.5- 16.5ms

Transferrate 5.53- 7.48MB/sec

Disk cacheis the buffer for temporarily storing data sent to/from the storage interface. It

is partitioned into segments. Each segment consists of many 512-byte blocks. In our

simulation model, each segment will be used by one command. The cache component

also employs an LRU (Least Recently Used) cache segment replacement scheme. The

parameters that the disk cache used in the model are summarized in Table 2. In our

simulation, the number of segments is a controlled parameter. We used different numbers

of segments in order to understand the impact of cache size and disk scheduling schemes

on the system performance.

Table 2: Disk cache parameters
Disk Cache Parameter Values

Block Size 512 bytes

Number of segments Varied

Segment size 64 KB

128

4.1.2FC-AL Model

We follow theFC-AL standard to model our disk interface. FC-AL is a protocol allowing

Fibre Channel to operate in a loop topology. It is logically located between FC-1 and FC-

2. The FC-AL component in our model consists of both Loop Port State Machine

(LPSM) and Fibre Channel Protocol for SCSI (FCP). LPSM defines the behavior of the

FC-AL loop port. It includes an arbitration protocol which determines who can access the

loop. It also includes _ fairness protocol that enforces fair sharing of loop among all the

nodes. FCP is one of the Fibre Channel mapping protocols (FC-4) which uses the service

provided by FC-PH lo transmit SCSI commands and data. It also transmits status
information between a SCSI initiator and a SCSI target. More details about FC-AL can

be found in [5] and [7] Table 3 summarizes the parameters we used in the FC-AL model.

FC-AL Simulation

Link Speed

Propagation Delay

Per Node delay

Table 3: FC-AL Simulation

rameters Values

100 MB/Sec

3.5 ns

6 word time

parameters

Descriptions

Bandwidth of an FC-AL loop

Propagation delay between two nodes

The delay of forwarding a frame by
inlerface

Fairness algorithm Enabled The fairness protocol in its arbitration
scheme

4.1.3 Command Generator

Command Generator is responsible for generating commands in our model. At the

beginning of each sim Jlation run, it will generate the number of commands indicated by

the value of the maxirmm outstanding command parameter. When a command finishes,

it will generate another command immediately to maintain the maximum outstanding

commands in the system. The target disk of each command and the command's access

location (LBA) on the disk will be randomly assigned by the command generator. The

Command generator i'*,also responsible for sending the SCSI command response to the

target disk and generating data to be written on disk_.

4.2 Simulation Results

To better understand the impact of disk scheduling on Disk-Based XOR, we conducted

simulations in many different scenarios. We compared three disk scheduling disciplines

under different system loads with different data request sizes. We also compared them in

small and large-scale _torage systems. To predict the impact of the three different disk

scheduling algorithms on the Disk-Based XOR RAID performance with the high-end

disks, we further conducted simulations using a disk model with a two times

improvement in the disk rotation and seek times. By conducting these different

simulations, we hope to provide a better view of the impact of the disk scheduling on

Disk-Based XOR RAID performance and therefore, to demonstrate its importance.

129

To betterpresentour results,we will useaneight-diskFC-AL model asa basemodel.
We will comparethe performanceby changingthe systemparameterssuchassystem
load,datarequestsize,andnumberof diskswhile keepingtheotherparametersthesame.
As the basemodel, We will show the averagecommandresponsetime for 4KB read-
modify-write requestsin the eight-diskFC-AL system.The total numberof outstanding
commandswas768.That is, the number of outstanding commands was maintained at 768

after the simulation started. A new command was generated immediately after a previous

command had completed. For the XPWT scheduling, the value _i was set to 3

milliseconds. That is, an XPW command was given the higher priority over XDW

commands if its disk service time is less than the smallest service time among all the

XDW commands plus 3 milli-seconds. The maxNxpw value was set to the number of

segments minus four. That is, the XPW commands in disk command queue will be given

a higher priority when the total number of XPW commands in that disk command queue

is greater than the number of cache segments minus four. For example, if the number of

cache segments is twelve and there are more than eight XPW commands in disk queue,

the next command will be chosen from those XPW commands in the queue. In such a

case, the XPW with the shortest service time among the XPW commands will be chosen
as the next command.

The simulation result of the base model is shown in Figure 3. The XPWT Algorithm has

the least average command response time among the three on all the cache segment sizes

used in this study. It was 7% better than the Greedy algorithm when the number of

segments is eight. The results of the XPWQ Algorithm varied with the number of

segments. When the number of segments was eight, it performed closely to the XPWT

Algorithm. When the number of segments increases, the response time fell between those

of the Greedy Algorithm and the XPWT Algorithm.

Average command latency time
for 4KB request with 768

commands

3400 _._,
I I 3200 "'On Greedy

3000 --m-- XPWT

2800 XPWQ

2600

2400 , , ,

4 8 12 16
Average latency time

Figure 3:Average command latency with 4KB requests and 768 outstanding commands.

Figure 4 shows the system throughput achieved by the three scheduling algorithms on the

base model. Since the system was loaded with a fixed number of outstanding commands

(768 commands), the throughput was highly dependent on disk efficiency. The more

efficient the disk is, the higher throughput it will generate. In Figure 4, we see that the

XPWT Scheduling had the highest throughput among the three methods and had about

7% higher throughput than that of the Greedy Method in certain cases.

130

Average system throughtput for

4KB request with 768 commands

1.25 -

I 1.2"

1.15 "
1.1"

1.05 "
1"

0.95 "
0.9"

_Greedy

_XPWT

XPWQ

0.85 •

4 8 12 16
Average latency time

Figure 4:Average system throughput with 4KB requests and 768 outstanding commands.

Different System Load_,

To understand the imp_ ct of the three different scheduling methods under different levels

of the system loads, we also investigated the performance difference with a different

number of outstandin; commands in the system. As opposed to 768 outstanding

commands, we conducted simulations with 512 outstanding commands on the 8-disk

model. Figure 5 shows the results with both 768 and 512 outstanding commands. With

512 outstanding commmds, the average command latency time was about two thirds of

the time with 768 commands. The XPWT method outperformed the other two with 512

outstanding commands in all the three numbers of segments. The difference between the

Greedy Method and XPWT Method was reduced from about 7% with 768 outstanding

commands to about 5.4% with 512 outstanding commands. From the results, we found

that the larger the number of outstanding commands, the higher the performance gap is

between the XPWT method and Greedy Method. The major reason is that with more

outstanding commands, it is more likely to execute an XDW command than an XPW

command. When the cache segments are all filled, lhe disk will be forced to execute an

XPW command. In suca a case, the efficiency of the disk will be compromised.

1900

I I 1850
1800

1750

Average comman:l latency time

for 4KB reque,'_t with 512
commands

1950

1700

1650 , ,

4 8 12 16
Average latency time

--41--Greedy

--II---XPWT

XPWQ

Average command latency time

for 4KB request with 768

commands

I I 3200 --4k-- Greedy
3000 --I!-- XPWT

2800 XPWQ
2600

2400

4 8 12 16
Average latency time

Figure 5: Average command latency with and 512 vs. 768 outstanding commands with 4KB requests.

131

Another observationfrom theresultsis that theXPWQ methodtendedto becloseto the
performanceof theXPWT Methodwhenthenumberof segmentsis small.On theother
hand, it tendedto be closeto the GreedyMethod'sperformancewhen the numberof
segmentsis large. This is becausewhenthe numberof segmentsis large,moreXPW
commandsare allowed in a disk queuebefore they are given the higher priority.
Therefore,most of the time, the XPWQ methodmay perform as the GreedyMethod.
While with a smaller numberof segments,it is more likely to reach the maxNxpw
threshold.Therefore,it performscloserto theXPWT Method.

LargeScaleDisk System

We conductedsimulationson a 32-disk FC-AL model to show the performancein a
systemwith a larger numberof disks. In order to eliminatethe performancedifference
resultedfrom disk queuingtime betweenthe eight-diskand 32-diskmodel,we usedthe
samesystemloadon bothsystems.We usedanaverageof 64 commandsperdisk. That
is, weused512outstandingcommandson the eight-diskmodeland2048commandson
the 32-diskmodel.The resultsshoweda similar trendto whatwe haveobservedin the
eight-diskmodel(SeeFigure6). TheXPWT Methodwasstill thebestamongthethree.It
is about7%better than the GreedyMethodwhenthe numberof segmentswasequalto
eight.TheXPWQMethodperformedjust aswell astheXPWT Methodwhenthenumber
of segmentswasequalto eight.But the XPWT methodoutperformedtheXPWQmethod
whenthenumberof segmentsbecamelarger.

Average command latency time

for 4KB request with 8 disks and

512 commands

1950

1900

I I 1850
1800

1750

1700

1650 i | s

4 8 12 16
Average latency time

+Greedy

--B--xPw-r

XPWQ

1900

II 1850
1800

1750

Average command latency time

for 4KB request with 32disks and

2048 commands

1950

1700 "111
1650 , ,

4 8 12 16
Average latency time

Greedy

---B-- XPWT

XPWQ

Figure 6: Average command latency with 8 vs. 32 disks with 4KB requests.

Large Request Size - 64KB:

With a 4 KB request size, the actual transfer time is less significant compared to the disk

seek time and latency time. Therefore, the disk scheduling has a greater impact on the

disk efficiency. As the request size increases, the data transfer time becomes larger. The

extent of the improvement with better disk scheduling may be different. To understand

the performance of the three disk scheduling disciplines with larger requests, we also

conducted simulations with 64 KB requests. The results are shown in Figure 7.

132

Average command latency time

for 4KB requc,st with 768

3400

I I 3200
3000

2800

2600

2400

commands

Average command latency time

for 64KB request with 768

commands

6900

"-'4P-Greedy I II--II-- XPWT I 6400

XPWQ I 5900

54OO

4 8 1;! 16 4 8 12 16
Average latenzy time Average latency time

Fig_ re 7: Average command latency with 4KB vs. 64KB.

--4k-- Greedy I
I---B-- XPWT

XPWQ

With 64 KB requests, we observed even better improvement than 4 KB requests with

XOR-enhanced scheduling when the number of segments is small. For example, with 4

KB requests, the improvement of the XPWT Method over the Greedy Method was about

7% with 8-segment cat, he. While with 64 KB requests, the improvement was more than

8%. Furthermore, the KPWQ Method outperformed both the other methods and had an

improvement of close t,_ 12% over the Greedy Method with an 8-segment cache.

Performance with the Faster Disks

Disk technologies have improved significantly over the past decades. Recently, disk

density has been doub_ing better than every couple years. The disk rotation speed and

seek time have also improved significantly. In this paper, we have compared the

performance comparisc,n of different disk scheduling disciplines with disk rotation speed

that is used by most of the current off-the-shelf disk products (at the time this paper was

written). To predict tl'eir performance with the faster disk speed, we also conducted
simulation with faster c isks.

In order to reuse our disk model and its very detailed seed functions and zone-bit

encoding, we modeled the next generation disks by changing the parameters in our

existing disk model. _ith the targeted 15000 RPM next generation disk, we believe that

by doubling the disk rotation speed and halving the seek time and data transfer time in the

disk model we have, it will give us a close approximation of the model for the next high-

end disk. Figure 8 shows the performance comparison of the three scheduling methods

with current and high-end disk models. The result is shown in Figure 8. The improvement

of the XPWT method is almost 10% better than the Greedy method. The improvement of

the XPWQ method fell between the Greedy method and XPWT method. It has about a

6.7% improvement over the Greedy method at eight segments.

133

3400

II 3200

3000

2800

2600

Average command latency time
for 4KB request with 768

commands with lx disk speed

2400 , , ,

4 8 12 16
Average latency time

Average command latency time
for 4KB request with 768

commands with 2x disk speed
2400

2350

IIi_._xPw i 2250
I XPWQI 22002150

2100

2050

--_-- Greedy

--I!-- XPWT

XPWQ

4 8 12 16
Average latency time

Figure 8: Average command latency with] x vs. 2x disk speed with 4KB requests.

Impact of 8 value in XPWT method

In the earlier section, we mentioned that choosing a good 8 in XPWT could be difficult.

To understand the impact of 8 on the performance, we conducted more simulations with

different 8 values in different loads and cache segments. Figure 9 shows the results of the

average latency when 8 changes. The results show that when the number of outstanding

commands is 768 and the number of segments is four, we should use a greater 8 value.

When the number of outstanding commands is 512, the optimal value falls when 8 is

around three to four. The results also demonstrate that when the number of segments is

small, 8 should be set to a greater value. In Figure 9, it seems that setting 8 to 3 could

provide a performance gain close to optimal except when the number of outstanding

commands is 768 and the number of cache segments is four.

Average latency time with 768
outstanding commands

Average latency time with 512
outstanding commands

3200 _ 1900
1850

3000 1800

2800 1750

2600 1700
2400 1650

0 2 4 6 8 0 5 10

number of cache segements number of cache segments

Figure 9: Average command latency with Ix vs. 2x disk speed with 4KB requests.

5. Conclusion

In this paper, we have discussed the uniqueness of Disk-Based XOR operations on disk

scheduling and its impact on disk efficiency. We have proposed two XPW-enhanced disk

scheduling disciplines that are designed to improve the disk efficiency on Disk-Based

134

XOR RAID's. We hav,,•demonstratedtheir performanceresultsby simulations.We have
investigatedthe perfonnanceof the proposedXPW-enhanceddisk schedulingaswell as
theSSTFapproachsetting asthe baselineperformance.We haveconductedsimulations
under different scenarossuchas different scalesof storagesystem,different system
loads, different reque_,tsizes,and even with high-end disk technologies.We have
demonstratedusing simulation resultsthat the perlbrmancewasconsistentlyimproved
with thosetwo XPW-enhancedapproachesthroughoutall the cases.The resultsshowed
thatthe improvementc)uld beasmuchas12%.

As the disk technologiescontinueto improve rapidly, it hasbeenpredictedthat a one
terabytedisk costingb_low onehundreddollarscouldbeon themarket in lessthan five
years.With the price _f disk going lower and lower, and the capacityof disks going
higherand higher, it becomesmore importantto have a better RAID solution. Disk-
BasedXOR providesapromisinglower-costhigh-performancealternative.We hopethat
the studywe have pr_,sentedin this papercould open a door to finding better RAID
solutions.

References

[1] Gerry Houlder,JayElrod, andMike Miller, "XOR Commands on SCSI Disk Drives",
X3TI 0/94-11 lr9.

[2] Avi Silberschatz a ld Peter Galvin, "Operating System Concepts", Addition-Wesley

Publishing Company, Inc. fourth Edition, 1995.

[3] Sangyup Shim, Yu._wei Wang, Jenwei Hsieh, Tai-Sheng Chang, and David H.C. Du,

"Efficient Implementation of RAID-5 Using Disk Based Read Modifv Writes" Technical

Report, Department of Computer Science, University of Minnesota, 1996.

[4] Tai-Sheng Chang, Sangyup Shim, and David I-I.C. Du, "The Designs of RAID with

XOR Engines on Disks ./'or Mass Storage Systems", Sixth NASA Goddard Conference on

Mass Storage Systerr:s and Technologies in Cooperation with the Fifteenth IEEE

Symposium on Mass Storage Systems, March 22- 24, 1998, College Park, Maryland. }

[5] David H.C. Du, Tai-Sheng Chang, Jenwei Hsieh, Yuewei Wang and Simon Shim.

"Emerging Serial Storage Interfaces." Serial Storage Architecture (SSA) and Fibre

Channel - Arbitrated Loop (FC-AL)", TR 96-073, Technical Report, Department of

Computer Science, University of Minnesota}

[6] IBM Corporation, ' Functional Specification, Ultrastar XP Models", 1995.

[7] David H.C. Du, J_.'nwei Hsieh, Tai-Sheng Chang, Yuewei Wang and Simon Shim,

"Performance Study oj'Serial Storage Architecture (SSA) and Fibre Channel - Arbitrated

Loop (FC-AL)", to appear in IEEE Concurrency

135

Experimentally Evaluating In-Place Delta Reconstruction

Randal Burns

Dept. of Computer Science

Johns Hopkins Univ.

randal @ cs.jh u. edu

Larry Stockmeyer

Dept. of Computer Science
IBM Almaden Research Center

stock @ almaden, ibm. corn

Darrell D. E. Long

Dept. of Computer Science

Univ. of California, Santa Cruz

darrell @cs.ucsc.edu

Abstract

In-place reconstruc:ion of delta compressed data allows information on devices with lim-

ited storage capability _o be updated efficiently over low-bandwidth channels. Delta compres-

sion encodes a version of data compactly as a small set of changes from a previous version.

Transmitting updates t,) data as delta versions saves both time and bandwidth. In-place re-

construction rebuilds the new version of the data in the storage or memory space the current

version occupies - no additional scratch space is needed. By combining these technologies,

we support large-scale, highly-mobile applications on inexpensive hardware.

We present an experimental study of in-place reconstruction algorithms. We take a data-

driven approach to determine important performance features, classifying files distributed on

the Internet based on their in-place properties, and exploring the scaling relationship between

files and data structures used by in-place algorithms. We conclude that in-place algorithms are

I/O bound and that the performance of algorithms is most sensitive to the size of inputs and

outputs, rather than asymptotic bounds.

1 Introduction

We develop algorithms for data distribution and version management to be used for highly-mobile

and resource-limited computers over low-bandwidth networks. The software infrastructure for

Internet-scale file sharing i,,; not suitable for this class of applications, because it makes demands

for network bandwidth and storage/memory space that many small computers and devices cannot

meet.

While file sharing is prc,ving to be the new prominent application for the Internet, it is limited

in that data are not writabl,_ nor are versions managed. The many recent commercial and freely

available systems undersco'e this point, examples include Freenet [1] and GnuTella [2]. Writable

replicas greatly increase th_ complexity of file sharing - problems include update propagation and
version control.

Delta compression has proved a valuable tool for managing versions and propagating up-

dates in distributed systems and should provide the same benefits for Internet file sharing. Delta-

compression has been used to reduce latency and network bandwidth for Web serving [4, 20] and

backup and restore [6].

Our in-place reconstruc;ion technology addresses one of delta compression's major shortcom-

ings. Delta compression m_ kes memory and storage demands that are not reasonable for low-cost,

137

low-resource devices and small computers. In-place reconstruction allows a version to be updated

by a delta in the memory or storage that it currently occupies; reconstruction needs no additional

scratch space or space for a second copy. An in-place reconstructible delta file is a permuta-

tion and modification of the original delta file. This conversion comes with a small compression

penalty. In-place reconstruction brings the latency and bandwidth benefits of delta compression

to the space-constrained, mass-produced devices that need them the most, such as personal digital

assistants, cellular phones, and wireless handhelds.

A distributed inventory management system based on mobile-handheld devices is an archetypal

application for in-place technology. Many limited-capacity devices track quantities throughout

an enterprise. To reduce latency, these devices cache portions of the database for read-only and

update queries. Each device maintains a radio link to update its cache and run a consistency

protocol. In-place reconstruction allows the devices to keep their copies of data consistent using

delta compression without requiring scratch space, thereby increasing the cache utilization at target

devices. Any available scratch space can be used to reduce compression loss, but no scratch space

is required for correct operation. We observe that in-place reconstruction applies to both structured

data (databases) and unstructured data (files), because they manipulate a delta encoding, as opposed

to the original data. While algorithms for delta compressing structured data are different [9], they

employ encodings that are suitable for in-place techniques.

1.1 Delta Compression and In-Place Reconstruction

Recent developments in portable computing and computing appliances have resulted in a prolif-

eration of small network attached computing devices. These include personal digital assistants

(PDAs), Internet set-top boxes, network computers, control devices, and cellular devices. The data

contents of these devices are often updated by transmitting the new version over a network. How-

ever, low bandwidth channels and heavy Internet traffic often makes the time to perform software

update prohibitive.

Differential or delta compression [3, 13, 9, 8], encoding a new version of a file compactly as a

set of changes from a previous version, reduces the size of the transmitted file and, consequently,

the time to perform software update. Currently, decompressing delta encoded files requires scratch

space, additional disk or memory storage, used to hold a second copy of the file. Two copies of

the file must be available concurrently, as the delta file reads data from the old file version while

materializing the new file version in another region of storage. This presents a problem because

network attached devices often cannot store two file versions at the same time. Furthermore, adding

storage to network attached devices is not viable, because keeping these devices simple limits their

production costs.

We modify delta encoded files so that they are suitable for reconstructing the new version of the

file in-place, materializing the new version in the same memory or storage space that the previous

version occupies. A delta file encodes a sequence of instructions, or commands, for a computer

to materialize a new file version in the presence of a reference version, the old version of the file.

When rebuilding a version encoded by a delta file, data are both copied from the reference version

to the new version and added explicitly when portions of the new version do not appear in the

reference version.

If we were to attempt naively to reconstruct an arbitrary delta file in-place, the resulting output

138

wouldoftenbecorrupt.This occurswhenthedeltaencodinginstructsthecomputerto copydata
from afile regionwherenewfile datahasalreadybeenwritten. Thedatathealgorithmsreadshave
alreadybeenalteredandthe,'algorithmrebuildsanincorrectfile.

Wepresenta graph-theoreticalgorithmfor modifyingdeltafilesthatdetectssituationswherea
deltafile attemptsto readfrom analreadywrittenregionandpermutestheorderthatthealgorithm
appliescommandsin a dehafile to reducethe occurrenceof conflicts. The algorithmeliminates
theremainingconflictsby _emovingcommandsthat copydataandaddingexplicitly thesedatato
the deltafile. Eliminatingdatacopiedbetweenversionsincreasesthe sizeof thedeltaencoding
butallowsthealgorithmto outputanin-placereconstruclibledeltafile.

Experimentalresultswrify the viability and efficiencyof modifying delta files for in-place
reconstruction.Our finding_indicatethatouralgorithmexchangesasmallamountof compression
for in-placereconstructibility.

Experimentsalso revealan interestingpropertyof thesealgorithmsthat conflictswith algo-
rithmic analysis.We showin-placereconstructionalgorithmsto be I/O bound. In practice,the
mostimportantperformancefactoris theoutputsizeof thedeltafile. This meansthat heuristics
for eliminatingdataconflkts that minimize lost compressionaresuperiorto moretime efficient
heuristicsthatlosemoreconpression.Any timesavedin detectingandeliminatingconflictsis lost
whenwriting alargerdeltafile out to storage.

2 Related Work

Encoding versions of data compactly by detecting altered regions of data is a well known problem.

The first applications of del a compression found changed lines in text data for analyzing the recent

modifications to files [11]. Considering data as lines of text fails to encode minimum sized delta

files, as it does not examine data at a fine granulariO, and finds only matching data that are aligned

at the beginning of a new line.

The problem of representing the changes between versions of data was formalized as string-

to-string correction with b_ock move [24] - detecting maximally matching regions of a file at

an arbitrarily fine granular!ty without alignment. However, delta compression continued to rely

on the alignment of data, a_ in database records [23], and the grouping of data into block or line

granularity, as in source cote control systems [22, 25], to simplify the combinatorial task of finding

the common and different strings between versions.

Efforts to generalize delta compression to un-aligned data and to minimize the granularity of

the smallest change resulted in algorithms for compressing data at the granularity of a byte. Early

algorithms were based upol either dynamic programming [19] or the greedy method [24, 21, 17]

and performed this task usilg time quadratic in the length of the input files.

Delta compression algo ithms were improved to run in linear time and linear space. Algorithms

with these properties have been derived from suffix trees [27, 18, 16] and as a generalization of

Lempel-Ziv data compression [12, 13, 8]. Like algorithms based on greedy methods and dynamic

programming, these algorithms generate optimally compact delta encodings.

Recent advances produced algorithms that run in linear time and constant space [3]. These

differencing algorithms trade a small amount of compression, verified experimentally, in order to

improve performance.

Any of the linear runqime algorithms allow delta compression to scale to large input files

139

Reference File

:m
Re

Version File Delta File

VA i Add Dala]ti - A-dd_ "___'" _ <VA'VB" VA >

Malching VB

String (iopy _ <P_4, VB,RB" RA >

Add

< Vc, Vu- "_b>

!,_: Add Data _ _ _<Rc. VO.R o- R(>

' / "--_--_ <_,_ VE>!,D

Malching

lString

Figure 1: Encoding delta files. Common strings are encoded as copy commands (f, t, l) and new

strings in the new file are encoded as add commands (t, l) followed by the string of length l of

added data.

without known structure and permits the application of delta compression to file system backup

and restore [6].

Recently, applications distributing HTTP objects using delta files have emerged [20, 4]. This

permits web servers to both reduce the amount of data transmitted to a client and reduce the latency

associated with loading web pages. Efforts to standardize delta files as part of the HTTP protocol

and the trend toward making small network devices HTTP compliant indicate the need to distribute

data to network devices efficiently.

3 Encoding Delta Files

Differencing algorithms encode the changes between two file versions compactly by finding strings

common to both versions. We term these files a version file that contains the data to be encoded

and a reference file to which the version file is compared. Differencing algorithms encode a file

by partitioning the data in the version file into strings that are encoded using copies from the

reference file and strings that are added explicitly to the version file (Figure 1). Having partitioned

the version file, the algorithm outputs a delta file that encodes this version. This delta file consists

of an ordered sequence of cop), commands and add commands.

An add command is an ordered pair, (t, l), where t (to) encodes the string offset in the file

version and 1 (length) encodes the length of the string. The I bytes of data to be added follow the

command. A cop), command is an ordered triple, (f, t, l) where f (from) encodes the offset in the

reference file from which data are copied, t encodes the offset in the new file where the data are to

be written, and I encodes the length of the data to be copied. The copy command moves the string

data in the interval [f, f + l - 1] in the reference file to the interval It, t + 1 - 1] in the version file.

In the presence of the reference file, a delta file rebuilds the version file with add and copy

commands. The intervals in the version file encoded by these commands are disjoint. Therefore,

any permutation of the command execution order materializes the same output version file.

140

CI C2

"_ conflict corrupt

(a) Delta copy (b) In-place copy

Figure 2: Data conflk t and corruption when performing copy command C 1 before C2.

4 In-Place Modification Algorithms

An in-place modification algorithm changes an existing delta file into a delta file that reconstructs

correctly a new file version in the space the current version occupies. At a high level, our technique

examines the input delta file to find copy commands that read from the write interval (file address

range to which the command writes data) of other copy commands. The algorithm represents

potential data conflicts in a digraph. The algorithm topologically sorts the digraph to produce an

ordering on copy commands that reduces data conflicts. We eliminate the remaining conflicts by

converting copy commands to add commands. The algorithm outputs the permuted and converted

commands as an in-place re constructible delta file. Actually, as described in more detail below, the

algorithm performs permut _tion and conversion of commands concurrently.

4.1 Conflict Detection

Since we reconstruct files in-place, we concern ourselves with ordering commands that attempt

to read a region to which another command writes. For this, we adopt the term write before read

(WR) conflict [5]. For copy commands (f_, ti, l_) and (f_, tj, lj), with i < j, a WR conflict occurs

when

[ti,ti + Iz - 1] A [fj, fy + _j - 1] # q). (l)

In other words, copy command i and j conflict if i writes to the interval from which j reads

data. By denoting, for eac i copy command <fk, tk, lk), the command's read interval as Readk =

[fk, fk + lk - 1] and its write interval as Writek = [tk, t_ + lk -- 1], we write the condition (1) for

a WR conflict as Writei N Readj # _. In Figure 2, commands C1 and C2 executed in that order

generate a data conflict (blacked area) that corrupts data when a file is reconstructed in place.

This definition considers only WR conflicts between copy commands and neglects add com-

mands. Add commands write data to the version file; they do not read data from the reference

file. Consequently, an algcrithm avoids all potential WR conflicts associated with adding data by

placing add commands at the end of a delta file. In this way, the algorithms completes all reads

associated with copy comnmnds before executing the first add command.

Additionally, we define WR conflicts so that a copy command cannot conflict with itself. Yet,

a single copy command's read and write intervals intersect sometimes and would seem to cause a

conflict. We deal with read and write intervals that overlap by performing the copy in a left-to-right

or right-to-left manner. Fo_ command (f, t, 1), if f > t, we copy the string byte by byte starting at

the left-hand side when re_ onstructing the original file. Since, the f (from) offset always exceeds

the t (to) offset in the new file, a left-to-right copy never reads a byte over-written by a previous

byte in the string. When f < t, a symmetric argument shows that we should start our copy at the

141

right hand edge of the string and work backwards. For this example, we performed the copies in a

byte-wise fashion. However, the notion of a left-to-right or right-to-left copy applies to moving a

read/write buffer of any size.

To avoid WR conflicts and achieve the in-place reconstruction of delta files, we employ the

following three techniques.

1. Place all add commands at the end of the delta file to avoid data conflicts with copy com-
mands.

2. Permute the order of application of the copy commands to reduce the number of write before
read conflicts.

3. For remaining WR conflicts, remove the conflicting operation by converting a copy command

to an add command and place it at the end of the delta file.

For many delta files, no possible permutation eliminates all WR conflicts. Consequently, we require

the conversion of copy commands to add commands to create correct in-place reconstructible files

for all inputs.

Having processed a delta file for in-place reconstruction, the modified delta file obeys the prop-

erty

(Vj) Readj N Writei = _ , (2)

indicating the absence of WR conflicts. Equivalently, it guarantees that a copy command reads and

transfers data from the original file.

4.2 CRWI Digraphs

To find a permutation that reduces WR conflicts, we represent potential conflicts between the copy

commands in a digraph and topologically sort this digraph. A topological sort on digraph G =

(I, E) produces a linear order on all vertices so that if G contains edge _, then vertex u precedes

vertex v in topological order.

Our technique constructs a digraph so that each copy command in the delta file has a cor-

responding vertex in the digraph. On this set of vertices, we construct an edge relation with a

directed edge uv from vertex u to vertex v when copy command u's read interval intersects copy
--+

command v's write interval. Edge uv indicates that by performing command u before command 'v,

the delta file avoids a WR conflict. We call a digraph obtained from a delta file in this way a con-

flicting read write interval (CRWI) digraph. A topologically sorted version of this graph adheres

to the requirement for in-place reconstruction (Equation 2).

4.3 Strategies for Breaking Cycles

As total topological orderings are possible only on acyclic digraphs and CRWI digraphs may con-

tain cycles, we enhance a standard topological sort to break cycles and output a total topological

order on a subgraph. Depth-first search implementations of topological sort [10] are modified

easily to detect cycles. Upon detecting a cycle, our modified sort breaks the cycle by removing a

vertex. When completing this enhanced sort, the sort outputs a digraph containing a subset of all

142

verticesin topologicalorderanda setof verticesthat wereremoved.This algorithmre-encodes
thedatacontainedin the ccpy commands of the removed vertices as add commands in the output.

As the string that contains the encoded data follows converted add, this replacement reduces

compression in the delta file. We define the amount of compression lost upon deleting a vertex

to be the cost of deletion. Based on this cost function, we formulate the optimization problem of

finding the minimum cost set of vertices to delete to make a digraph acyclic. A copy command is

an ordered triple (f, t,/). An add command is an ordered double (t, l) followed by the l bytes of

data to be added to the nev_ version of the file. Replacing a copy command with an add command

increases the delta file size by 1 - Hfl], where Ilfl[denotes the size of the encoding of offset f.

Thus, the vertex that corresponds to the copy command (f, t, l) is assigned cost 1 - tlfll.

When converting a digraph into an acyclic digraph by deleting vertices, an in-place conversion

algorithm minimizes the an _ount of compression lost by selecting a set of vertices with the smallest

total cost. This problem, called the FEEDBACK VERTEX SET problem, was shown by Karp [14]

to be NP-hard for general digraphs. We have shown previously [7] that it remains NP-hard even

when restricted to CRWI d:graphs. Thus, we do not expect an efficient algorithm to minimize the

cost in general.

For our implementatioa of in-place conversion, we examine two efficient, but not optimal,

policies for breaking cycle.';. The constant-time policy picks the "easiest" vertex to remove, based

on the execution order of_he topological sort, and deletes this vertex. This policy performs no

extra work when breaking cycles. The local-minimum policy detects a cycle and loops through all

vertices in the cycle to determine and then delete the minimum cost vertex. The local-minimum

policy may perform as mu_:h additional work as the total length of cycles found by the algorithm:

O(rt.2). Although these po icies perform well in our experiments, we have shown previously [7]

that they do not guarantee that the total cost of deletion is within a constant factor of the optimum.

4.4 Generating Conflict Free Permutations

Our algorithm for convertiag delta files into in-place reconstructible delta files takes the follow-

ing steps to find and elimiqate WR conflicts between a reference file and the new version to be
materialized.

Algorithm

1. Given an input delta file, we partition the commands in the file into a set C of copy commands
and a set A of add ccmmands.

2. Sort the copy commands by increasing write offset, Csorted = {q, c2, ..., on}. For ci and cj,

this set obeys: i < j +----+ ti < _j. Sorting the copy commands allows us to perform binary

search when looking for a copy command at a given write offset.

3. Construct a digraph from the copy commands. [:or the copy commands el, c2, ..., c,_, we

create a vertex set 1" =: {_/"t,/':2; "", Un}" Build the edge set E by adding an edge from vertex

vi to vertex vj when ,:opy command ci reads from the interval to which cj writes:

viv_ _ R,'adi N Writej ¢ _ +-----+ [fi, j'_ + li - 1] fq [tj, _j Jr [J -- 1] ¢ _).

143

U

K

z

30000

20000

15000

i0000

5000

[] File cour, t

• File data size
6 01,:_08

5,01']_08
C..D

401'i+08

3.01+i#08 _

7.0l']408 "-"

1.01+]_Oil

o O.OE_O0

All files Cyclos Trivial Reorder

Figure 3: File counts and data size.

4. Perform a topological sort on the vertices of the digraph. This sort also detects cycles in the

digraph and breaks them. When breaking a cycle, select one vertex on the cycle, using either

the local-minimum or constant-time cycle breaking policy, and remove it. We replace the

data encoded in its copy command with an equivalent add command, which is put into set

A. The output of the topological sort orders the remaining copy commands so that they obey

the property in Equation 2.

5. Output all add commands in the set A to the delta file.

The resulting delta file reconstructs the new version out of order, both out of write order in the

version file and out of the order that the commands appeared in the original delta file.

5 Experimental Results

As we are interested in using in-place reconstruction to distribute software, we extracted a large

body of Internet available software and examined the compression and execution time performance

of our algorithm on these files. Sample files include multiple versions of the GNU tools and the

BSD operating system distributions, among other data, with both binary and source files being

compressed and permuted for in-place reconstruction. These data were examined with the goals

of:

• determining the compression loss due to making delta files in-place reconstructible;

• comparing the the constant-time and local-minimum policies for breaking cycles;

• showing in-place conversion algorithms to be efficient when compared with delta compres-

sion algorithms on the same data; and

• characterizing the graphs created by the algorithm.

In all cases, we obtained the original delta files using the correcting 1.5-pass delta compression

algorithm [3].

We categorize the delta files in our experiments into 3 groups that describe what operations

were require to make files in-place reconstructible. Experiments were conducted over more than

144

1 40E4 Oft

1001,:f 0_{

600F, _07

400F, I 07

2 001,'._07

000b:4O0

All file._ ('.;'< I{!._

[] tII)l)clb_

1' Ill'licit,

I_11_ {:o_lsl

lip I,min

rI'rivial 17_>order'

:]L!

-L

[:

_,], ::

[] : {'i;',_;

i 1/1/
i i i

(a) Del_a size (b) Delta compression

Figure 4: Compression performance

34,000 delta files totaling 6.5MB (Megabytes). Of these files (Figure 3), 63% of the files contained

cycles that needed to be broken. 29% did not have cycles, but needed to have copy commands

reordered. The remaining 8% of files were trivially in-place reconstructible; i.e., none of the copy

commands conflicted. For trivial files, performing copies before adds creates an in-place delta.

The amount of data in files is distributed differently across the three categories than are the file

counts. Files with cycles contain over 4MB of data with an average file size of 31.4KB. Files that

need copy commands reordered hold 1.9MB of data, with an average file size of 11.6KB. Trivially

in-place reconstructible files occupy 585KB of data with an average file size of 10.2KB.

The distribution of file_', and data across the three calegories confirms that efficient algorithms

for cycle breaking and command reordering are needed to deliver delta compressed data in-place.

While most delta files do rot contain cycles, those that do have cycles contain the majority of the

data.

We group compression results into the same categories. Figure 4(a) shows the relative size of

the delta files and Figure _(b) shows compression (size of delta files as a fraction of the original

file size). For each category and for all files, we report data for four algorithms: the unmodi-

fied correcting 1.5-pass delta compression algorithm [3l (HPDelta); the correcting 1.5-pass delta

compression algorithm modified so that code-words are in-place reconstructible (IP-HPDelta); the

in-place modification algotithm using the local-minimum cycle breaking policy (IP-Lmin); and the

in-place modification algorithm using the constant-time cycle breaking policy (IP-Const).

The HPDelta algorithra is a linear time, constant space algorithm for generating delta com-

pressed files. It outputs c, wy and add commands using a code-word format similar to industry

standards [15].

The IP-HPDelta algori :hm is a modification of HPDelta to output code-words that are suitable

for in-place reconstructior. Throughout this paper, we have described add commands (t, l) and

copy commands If, t, l), where both commands encode explicitly the to t or write offset in the

version file. However, delta algorithms that reconstruct data in write order need not explicitly

encode a write offset - at,, add command can simply be (1) and a copy command (f, 1}. Since

commands are applied in write order, the end offset of the previous command implies the write

offset of the current comwmnd implicitly. The code-words of IP-HPDelta are modified to make

the write offset explicit. The explicit write offset allows our algorithm to reorder copy commands.

This extra field in each code-word introduces a per-command overhead in a delta file. The amount

145

-- :iC_,i)()

!2 !0?,('

i l](;i]

('of::<!

5000

-_ 4000
o

3000

_ 2000

1000

Computation

(a) Overhead (b) Breakdown

Figure 5: Run-time results

l/o

of overhead varies, depending upon the number of commands and the original size of the delta file.

Encoding overhead incurs a 3% compression loss over all files.

From the IP-HPDelta algorithm, we derive the IP-Const and IP-Lmin algorithms. They run

the IP-HPDelta algorithm to generate a delta file and then permute and modify the commands

according to our technique to make the delta file in-place reconstructible. The IP-Const algorithm

implements the constant-time policy and the IP-Lmin algorithm implements the local-minimum

policy.

Experimental results indicate the amount of compression lost due to in-place reconstruction and

divides the loss into encoding overhead and cycle breaking. Over all files, HPDelta compresses

data to 12.9% its original size. IP-HPDelta compresses data to 15.9%, losing 3% compression

to encoding overhead. IP-Const loses an additional 3.4% compression by breaking cycles for a

total compression loss of 6.4%. In contrast, IP-Lmin loses less than 0.5% compression for a total

loss of less than 3.5%. The local-minimum cycle breaking policy performs excellently in practice,

because compression losses are small when compared with encoding overheads. With IP-Lmin,

cycle breaking accounts for less than 15% of the loss. IP-Const more than doubles the compression
loss.

For reorder and trivial in-place delta files, no cycles are present and no compression lost. En-

coding overhead makes up all lost compression - 0.5% for trivial delta files and 1.8% for reordered
files.

Files with cycles exhibit an encoding overhead of 3.8% and lose 5.4% and 0.7% to cycle break-

ing for the IP-Const and IP-Lmin respectively. Because files with cycles contain the majority of

the data, the results for files with cycles dominate the results for all files.

In-place algorithms incur execution time overheads when performing additional I/O and when

permuting the commands in a delta file. An in-place algorithm must generate a delta file and then

modify the file to have the in-place property. Since a delta file does not necessarily fit in memory,

in-place algorithms create an intermediate file that contains the output of the delta compression

algorithm. This intermediate output serves as the input for the algorithm that modifies/permutes

commands. We present execution-time results in Figure 5(a) for both in-place algorithms - IP-

Const and IP-Lmin. IP-Lmin and IP-Const perform all of the steps of the base algorithm (IP-

HPDelta) before manipulating the intermediate file. Results show that the extra work incurs an

146

4 x I0_

-_- h HPDeha

-- I! LMin

+ I] { on_t

i

i_ ---_

11'

05

I:ilc Size _byle_)

x lO x I(] _

-¢ [P-ItPDeha o -I_" IP HPDelta

2_... ---II'-I Min _r_l'?l_III. -- IP-I M.n
, + [1' ('onst + IP-('_msl

q.. .

._ "o o- "_ 0- 0 O

] o

q) I(M) 2<)0 ')(X) 4(_) 5('_) (I) lO0 2{X) _{;O 4(X) S(X)

Number _I _erllce_ Number _f _]ge_

(a) File Size (b) Vertices (c) Edges

Figure 6: Run-time results

overhead of about 75%. H 9wever, figure 5(b) shows that almost all of this overhead comes from

additional I/O. We conclude that the algorithmic tasks for in-place reconstruction are small when

compared with the effort compressing data (about 10% the run-time) and miniscule compared to

the costs of performing file I/O.

Despite inferior worst-'ase run-time bounds, the local-minimum cycle breaking policy runs

faster than the constant-time policy in practice. Because file I/O dominates the run-time costs and

because IP-Lmin creates a smaller delta file, it takes less total time than the theoretically superior

IP-Const. In fact, IP-Const spends 2.2% more time performing I/O as a direct result of the files

being 2.9% larger. IP-Lmin even uses slightly less time performing computation than IP-Const,

which has to manipulate re)re data in memory.

Examining run-time remlts in more detail continues to show that IP-Lmin outperforms IP-

Const, even for the largest and most complex input files. In Figure 6, we see how run-time perfor-

mance varies with the input file size and with the size ot the graph the algorithm creates (number

of edges and vertices); these plots measure run time by data rate - file size (bytes) divided by run

time (seconds).

Owing to start-up costs, data rates increase with file size up to a point, past which rates tend

to stabilize. The algorithrrs must load and initialize dala structures. For small files, these costs

dominate, and data rates ale lower and increase linearly with the file size (Figure 6(a)). For files

larger than 2000 bytes, rates tend to stabilize, exhibiting some variance, but neither increasing or

decreasing as a trend. The_e results indicate that for inputs that amortize start-up costs, in-place

algorithms exhibit a data rate that does not vary with the size of the input - a known property of

the HPDelta algorithm [3]. IP-Lmin performs slightly better than IP-Const always.

The performance of all algorithms degrades as the size of the CRWI graphs increase. Figure

6(b) shows the relative perlormance of the algorithms as a function of the number of vertices, and

Figure 6(c) shows this for tae number of edges. For smaller graphs, performance degrades quickly

as the graph size increases. For larger graphs, performance degrades more slowly. The graph size

corresponds directly to the number of copy commands in a delta file. The more commands, the

more I/O operations the algorithm must execute. Often more vertices means more small I/O rather

than fewer large I/O, resulting in lower data rates.

Surprisingly, IP-Lmin continues to out-perform IP-Const even for the largest graphs. Analysis

would indicate that the pe:'formance of IP-Lmin and IP-Const should diverge as the number of

147

10 5 i • _ r

10 '_]

10_ t'"

IOZ I +¢ -_

I°'I _i! ..,," _i

'°°'o° ,o' ,o-' .; ,o' io'
Vertices

i0 _

10:

i0 _

10_

I0 L

IOi°oLo

f***)
.._),

10 2 10 4 l0 n

File Size (bytes

(a) Edges versus Vertices (b) Edges versus File Size

Figure 7: Edges in delta files that contain cycles.

edges increase. But no evidence of divergent performance exists. We attribute this to two factors:

(1) graphs are relatively small and (2) all algorithms are I/O bound.

In Figure 7, we look at some statistical measures of graphs constructed when creating in-

place delta files, restricted to those graphs that contain cycles. While graphs can be quite large, a

maximum of 11503 vertices and 16694 edges, the number of edges scales linearly with the number

of vertices and less than linearly with input file size. The constructed graphs do not exhibit edge

relations that approach the O(IV] 2) upper bound. Therefore, data rate performance should not

degrade as the number of edges increases. For example consider two files as inputs to the IP-Lmin

algorithm - one with a graph that contains twice the edges of the other. Based on our result, we

expect the larger graph to have twice as many vertices and encode twice as much data. While the

larger instance does twice the work breaking cycles, it benefits from reorganizing twice as much

data, realizing the same data rate.

The linear scaling of edges with vertices and file size matches our intuition about the nature

of delta compressed data. Delta compression encodes multiple versions of the same data. There-

fore, we expect matching regions between these files (encoded as edges in a CRWI graph) to have

spatial locality; i.e., the same string often appears in the same portion of a file. These input data

do not exhibit correlation between all regions of a file which would result in dense edge relations.

Additionally, delta compression algorithms localize matching between files, correlating or syn-

chronizing regions of file data [3]. All of these factors result in the linear scaling that we observe.

6 Conclusions

We have presented algorithms that modify delta files so that the encoded version may be recon-

structed in the absence of scratch memory or storage space. Such an algorithm facilitates the dis-

tribution of software to network attached devices over low bandwidth channels. Delta compression

lessens the time required to transmit files over a network by encoding the data to be transmitted

compactly. In-place reconstruction exchanges a small amount of compression in order to do so

without scratch space.

Experimental results indicate that converting a delta file into an in-place reconstructible delta

file has limited impact on compression, less than 4% in total with the majority of compression

148

loss from encodingoverheadsratherthanmodificationsto the delta file. We also find that for
bottomline performancekeepingdeltafilessmallto reduceI/O mattersmorethanexecutiontime
differencesin cyclesbreakingheuristics,becausein-placereconstructionis I/O bound.For overall
performance,thealgorithrr to convertadeltafile to anin-placereconstructibledeltafile requires
lesstimethangeneratingtl-edeltafile in thefirst place.

In-placereconstructibkdeltafile compressionprovidesthe benefitsof deltacompressionfor
datadistributionto animportantclassof applications- deviceswith limited storageandmemory.
In thecurrentnetworkcorr,putingenvironment,this technologydecreasesgreatlythetime to dis-
tribute contentwithout increasingthe developmentcostor complexityof the receivingdevices.
Deltacompressionprovide:;Internet-scalefile sharingwith improvedversionmanagementandup-
datepropagation,andin-placereconstructiondeliversthetechnologyto theresourceconstrained
computersthatneedit mos:.

7 Future Directions

Detecting and breaking cor_flicts at a finer granularity can reduce lost compression when breaking

cycles. In our current alg,)rithms, we eliminate cycles by converting copy commands into add

commands. However, typi.:ally only a portion of the offending copy command actually conflicts

with another command; only the overlapping range of bytes. We propose, as a simple extension,

to break a cycle by convert ng part of a cop>' command to an add command, eliminating the graph

edge (rather than a whole vertex as we do today), and leaving the remaining portion of the copy

command (and its vertex) in the graph. This extension does not fundamentally change any of our

algorithms, only the cost function for cycle breaking.

As a more radical depaiture from our current model, we are exploring reconstructing delta files

with bounded scratch space, as opposed to zero scratch space as with in-place reconstruction. This

formulation, suggested by Martin Abadi, allows an algorithm to avoid WR conflicts by moving

regions of the reference fil,_ into a fixed size buffer, which preserves reference file data after that

region has been written. The technique avoids compression loss by resolving data conflicts without

eliminating copy commands.

Reconstruction in bourtded space is logical, as target devices often have a small amount of

available space that can be used advantageously. However, in-place reconstruction is more gen-

erally applicable. For bounded space reconstruction, the target device must contain enough space

to rebuild the file. Equiva ently, an algorithm constructs a delta file for a specific space bound.

Systems benefit from usinjg the same delta file to update software on many devices. For exam-

ple, distributing an update3 product list to many PDAs in the same sales force. In such cases,

in-place reconstruction offt;rs a lowest common denominator solution in exchange for a little lost

compression.

We also are developing algorithms that can perform peer-to-peer style delta compression [26]

in an in-place fashion. Ths allows delta compression to be used between two versions of a file

stored on separate machines and is often a more natural formulation, because it does not require a

computer to maintain the criginal version of data to employ delta compression. This works well

for file systems, most of which do not handle multiple versions.

Our ultimate goal is to use in-place algorithms as a basis for a data distribution system. The

system will operate both in aierarchical (client/server) and peer-to-peer modes. It will also conform

149

to Internet standards [15] and, therefore, work seamlessly with future versions of HTTR

References

[1] The free network project - rewiring the Internet. Technical Report http://freenet.sourceforge.net/,

2001.

[2] The gnutella protocol specification. Technical Report http://www.gnutelladev.com/protocol/gnutella-

protocol.html, 2001.

[31 M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and L. Stockmeyer. Compactly encoding unstructured in-

put with differential compression, www. almaden, ibm. eom/e s/peopl e/stoek/di f f 7. ps,

IBM Research Report RJ 10187, April 2000 (revised Aug. 2001).

[4] G. Banga, E Douglis, and M. Rabinovich. Optimistic deltas for WWW latency reduction. In Proceed-

ings of the 1998 Usenix Technical Conference, 1998.

[5] R A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recover).' in Database

Systems. Addison-Wesley Publishing Co., 1987.

[6] R. C. Burns and D. D. E. Long. Efficient distributed backup and restore with delta compression. In

Proceedings of the Fifth Workship on I/0 in Parallel and Distributed Systems, San Jose, CA, November

1997.

[7] R. C. Burns and D. D. E. Long. In-place reconstruction of delta compressed files. In Proceedings of

the Seventeenth ACM Symposium on Principles of Distributed Computing, 1998.

[8] M. Chan and T. Woo. Cache-based compaction: A new technique for optimizing web transfer. In

Proceedings of the IEEE Infocom '99 Conference, New York, NY, March 1999.

[9] S.S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured data. In Proceedings

of the ACM SIGMOD International Conference on the Management of Data, May 1997.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge,

MA, 1990.

[11] S. R de Jong. Combining of changes to a source file. IBM Technical Disclosure Bulletin, 15(4):1186-

1188, September 1972.

[12] J. J. Hunt, K.-R Vo, and W. E Tichy. An empirical study of delta algorithms. In Proceedings of the

6th Workshop on Software Configuration Management, March 1996.

[13] J. J. Hunt, K.-R Vo, and W. F. Tichy. Delta algorithms: An empirical analysis. ACM Transactions on

Software Engineering and Methodology, 7(2): 192-214, 1998.

[14] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors,

Complexity of Computer Computations, pages 85-104. Plenum Press, 1972.

[15] D.G. Korn and K.-R Vo. The VCDIFF generic differencing and compression format. Technical Report

Internet-Draft draft-vo-vcdiff-00, Internet Engineering Task Force (IETF), 1999.

[16] S. Kurtz. Reducing the space requirements of suffix trees. Sofm'are - Practice and Experience,

29(13):1149-1171, 1999.

150

[17] J. P. MacDonald, P. N. ltilfinger, and L. Semenzato. PRCS: The project revision control system. In

Proceedings System Cot figuration Management, 1998.

[18] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM, 23(2),

April 1978.

[19] W. Miller and E. W. IVlyers. A file comparison program. Software - Practice and Experience,

15(11):i025-1040, Nov._mber 1985.

[20] J. C. Mogul, F. Douglis, A. Feldman, and B. Krishnamurthy. Potential benefits of delta encoding and

data compression for Hq'TP. In Proceedings ofACM SIGCOMM '97, September 1997.

[21] C. Reichenberger. I)elt_L storage for arbitrary non-text files. In Proceedings of the 3rd hlternational

Workshop on Software Configuration Management, Trondheim, Norway, 12-14 June 1991, pages 144-

152. ACM, June !991.

[22] M. J. Rochkind. The source code control system. IEEE Transactions on Software Engineering, SE-

1(4):364-370, December 1975.

[23] D.G. Severance and G. M. Lohman. Differential files: Fheir application to the maintenance of large

databases. ACM Transa_'tions on Database Systems, 1(2_:256-267, September 1976.

[24] W. E Tichy. The string-t,)-string correction problem with block move. ACM Transactions on Computer

Systems, 2(4), November 1984.

[25] W. E Tichy. RCS - A sy _tem for version control. Sofm,are - Practice and Experience, 15(7):637-654,

July 1985.

[26] A. Tridgell and P. Mack._rras. The RSync algorithm. Technical Report TR-CS-96-05, The Australian

National University, 1%6.

[27] P. Weiner. Linear pattcrn matching algorithms. In Proceedings of the 14th IEEE Symposium on

Switching and Automato Theor)', pages 1-11, 1973.

151

Intra-file Security for a Distrilmted File System

Scott A. Banachowski, Zachary N. J. Peterson, Ethan L. Miller and Scott A. Brandt

Storage Systems Research Center

Jack Baskin School of Engineering

University of California

Santa Cruz, CA 95064

{ sbanacho,zachary, elm,scott} @cs.ucsc.edu

Telephone: +1 (831) 459-2545

Fax: +1 (831)459-4829

Abstract

Cryptographic file systems typically provide security by encrypting entire files or directo-

ries. This has the advantage of simplicity, but does not allow for fine-grained protection

of data within very large files. This is not an issue in most general-purpose systems, but

can be very important ia scientific applications where some but not all of the output data

is sensitive or classified. We present a more flexible approach that uses common crypto-

graphic techniques to s_cure any arbitrary-sized region of data within a file, even if the

region is logically non-contiguous. This approach, called intra-file encryption, allows mix-

ing data of different sensitivity in a single file. This benefits users by permitting related

data belonging to a single file to be kept together ralher than separating data of different

security needs. Supporling intra-file encryption requires additional file metadata and key

management services. For file systems that store metadata and files on the same server, the

management of extra n-etadata poses little problem beyond storage overhead. However,

for high-performance network-attached file systems, the additional metadata poses greater

challenges related to data placement and security. This paper describes the intra-file se-

curity encryption technique with discussion of including support for it in a distributed file

system.

1 Introduction

Traditionally, file system security uses an "all-or-nothing" approach--all of a file is en-

crypted identically. Thi:; approach is sufficient in situations where a file must be accessed

in its entirety to make sense for a user or application. However, there are many cases where

a user should only have access to some of the data in a file. A large file used for scientific

modeling might contain mostly unclassified informalion, with some sections of classified

153

data. Other examples include a satellite map of a region containing military zones, a speci-

fication for a vehicle with sensitive information, or a recipe with a secret ingredient. Using

current techniques, users that desire different levels of security must use different files,

complicating access for all users.

In this paper, we introduce intra-file security--a flexible approach to providing end-to-end

encryption in a file system. It allows users to encrypt extents of files independently from

other extents, so that a single file may contain one or more secure regions. A file system

incorporating intra-file security transparently handles most operations, such as automatic

decryption and key management. The result is a file system with little extra programming

or runtime overhead for the added functionality. Reads are entirely managed by the file

system and writes occur via two separate but nearly identical function calls for unencrypted

and one for encrypted data.

Flexible end-to-end encryption technology is becoming increasingly important as systems

use distributed storage architectures. High-performance computer systems deal with data

sets of tremendous size; files used in scientific computing and data-mining applications

commonly extend beyond the capabilities of single storage devices. Distributed storage

architectures provide one solution for the demands of increased storage needs. By spread-

ing file system data over multiple network nodes, distributed storage provides high data

rates through parallelism, and large, scalable storage capacity with a capability for fault

tolerance through redundancy. However, distributing storage also increases the number of

potential points for network intrusion, making data susceptible to security breaches. To

secure sensitive data, networked file servers should store and transmit only encrypted data,

which is decoded by clients with cryptographic keys. Many end-to-end encryption tools

exist, and the least cumbersome for users are those built into the file system [1]. Such file

systems transparently decode encrypted data for users with proper permission rights.

Existing cryptographic file systems secure data on a per-directory [1] or per-file [4] basis.

This level of granularity is not flexible enough to support applications that benefit from

encrypting smaller regions within files. If information is only encrypted on a per-file basis,

then a set of data containing a mix of sensitive and unclassified data must be stored in two

or more files, one for each security level. However, in some cases it is beneficial to keep

data in a single file; users and tools can manage the data as a single entity in the file system,

and the same applications may use secure and insecure data sets. Because they encrypt

whole files or file systems, existing cryptographic file system techniques cannot address

this problem.

Intra-file security offers additional security by allowing more fine-grained control file ac-

cess, breaking a file into regions of differing security without compromising single-file

semantics. This allows the system to transparently handle security operations, making the

security invisible to authorized users and thus more likely to actually be used. In order

to implement intra-file security, we introduce security-related metadata, and provide a key

management solution that allows flexibility in security and access policy.

Section 2 introduces the intra-file security (IFS) encryption algorithm. The algorithm,

based on well-known cryptographic techniques, may be implemented stand-alone or as

154

part of a larger system, such as a file system. Section 3 describes how to integrate IFS

into a distributed object-based file system. Sections 4 and 5 discuss some possible IFS

applications and relateci work.

2 Intra-File Securit:_

Intra-file security (IFS) allows encryption to be applied to segments as small as a byte or as

large as an entire file; n Lultiple encrypted segments need not be logically contiguous within

the file. In an IFS file, encrypted data is stored logically in-place, and occupies the physical

file blocks that would Aave contained the unencrypled data. To support efficient random

file access, we independently encrypt data from each logical file block, so there is no de-

pendence on informati,)n from other blocks. Consider the file shown in Figure 1, which

contains a non-contiguous region that must be kept secure. The region spans one entire

logical block (L1), and two partial blocks (L2 and L3). As mentioned above, this region is

not independently encryptable using standard techniques. With IFS, this non-contiguous

region of the file can be encrypted independently and made available only to appropriate

users. Furthermore, be_ ause the encrypted data is left in place, all programs written to work

with the full data set (ir cluding legacy applications) can still function properly. All regions

of the data, encrypted aad unencrypted alike, will still be readable except that the encrypted

regions will not contair the secured data values but will instead contain apparently random

values.

Insecure Region

I_ Secure Region

III
Figure 1: A single k,gical file address space broken into secure and insecure regions.

The encryption technique may use any block or stream cryptographic algorithm. Because

the size of encrypted d_...tain a file block may not match cipher block sizes, the algorithm is

well-suited to stream c,.phers, but can also be made to work with block ciphers with little

additional effort. The flexibility of choosing any cryptographic algorithm allows system

builders to vary encryption strength, conform with specific standards, or integrate off-the-

shelf hardware chips into the system. The choice of block or stream cipher presents only a

slight variation on the technique, so we present methods for both.

2.1 Block Cipher Technique

In an IFS file, secure segments may reside anywhere within a block, and may not be phys-

ically contiguous within a block. This causes a prohlem for block encryption algorithms

155

thatexpectto receivecontiguousblocksof data for encryption. Our system combines all

segments within a block into a temporary buffer before encryption, encrypts the buffer,

and then redistributes the cipher back into the positions of the original plain-text segments.

This process uses scatter-gather, minimizing actual copies to the bytes at the start and end

of a region necessary to pad out the encryption block (often 64-128 bits), and uses pointer

manipulation to do the rest of the encryption in place.

Because the output of a block algorithm is a fixed size, and the data may not necessarily

match this size, we employ cipher-text stealing [2] to match encrypted data sizes to unen-

crypted sizes. Cipher-text stealing allows us to output ciphers of the same size as the input,

even if they do not match the cipher block size. The encrypted data is then redistributed

back to the file block in the area originally occupied by its plain-text counterpart. By using

initialization vectors (IVs) [13] and cipher block chaining (CBC) [13], we also obscure

data containing repeated patterns (such as headers) The IV must be unique for each block

in a storage device but need not be secret.

2.2 Stream Cipher Technique

By using a stream cipher such as RC4 or SEAL [13], IFS does not need to assemble data

into temporary buffers or use pointer manipulation to collect bytes for encryption; instead,

data may be encrypted in place. Stream ciphers such as RC4 claim a speed improvement

of 10 times over DES, further improving performance. Applying feedback chaining to the

stream hides data patterns--we use an IV to initialize the feedback chain, therefore the

metadata structure does not differ from block mode encryption.

2.3 Encryption Metadata

By default, all data in the file is assumed to be unencrypted. In order to locate the secure

data within the file, and to find the encryption parameters, each encrypted block requires

a description of the location of secure segments and initialization vector information. In

IFS, the structure holding this data is a security node, or s-node, shown in Figure 2. The

size of an s-node depends on the number and layout of secure regions. A secure region is

defined by an extent consisting of a start and a length; the start is relative to the start of the

previous secure region, or the start of the block for the first region. Because many secure

regions are formed of repeating patterns of data of varying levels of security, there is also a

shorthand way of representing simple patterns of secure regions that are a fixed length and

fixed distance apart. This is accomplished by specifying a repetition count associated with

the offset and length specified in the secure region specification.

In addition to information about the location of secure regions, s-nodes must store the in-

formation necessary to encrypt and decrypt the secured data. This includes key information

for the region as well as an initialization vector (IV)--a number used to seed the encryption

algorithm when it operates on the encrypted data in the block. An IV is necessary to ensure

that encrypted regions with the same data do not result in the same ciphertext, providing

156

Unencrypted

Encrypted: access by group A

Encrypted: access by group B

Length Co[-C--_-nTF

512 256 1

256 256 1

512 256 1

256 256 1

768 128 1

256 128 3

s-group

A

B

A

B

A

A

Figure 2: A 4 KB block encrypted with intra-file security and its associated security node

(s-node). Note that the last entry in the s-node has a repeat count of 3, representing the

three repeated secure regions near the end of the file. The first of the four regions must be

represented separately because its distance from the previous region is larger than that of

the following three regJ ons.

insight about the file's _tructure or contents that might prove useful to an intruder. The IV

must differ for each fil z block, and thus is a function of the logical block number as well

as per-file values such as file identifier. If the IV for a block can be determined solely from

the logical block numb zr and per-file constants, it need not be stored in the s-node because
it can be calculated at runtime.

Pointers to keys, on the other hand, must always be stored in the s-nodes. It might be possi-

ble to avoid storing key information in the s-node by simply referring to key information for

the whole file; howeve', this approach would not permit encrypting portions of a file with

different keys. Instead, we store an s-group identifier for each secure region; this identifier

is translated by the syslem into a key using the approach discussed in Section 3.1.

There is one s-node sUucture for each logical file block that contains any encrypted seg-

ments. Note, however, that it is possible to group file system blocks together to reduce the

amount of storage required by s-nodes; this technique is particularly effective for files that

require large numbers af identically-sized regions with constant spacing. In such files, a

few secure region descriptors can suffice for a large number of secure regions, reducing

the file system overhea, J for IFS. Because s-nodes are allocated by the file system from the

same pool of blocks uszd for regular files, reducing the size of security information allows

more data to be stored n the file system.

157

It should be noted that while they are adequate for their intended purpose, the s-node struc-

ture described in this section could be improved in several ways. The s-node as depicted

in Figure 2 is simple to implement, but uses space inefficiently. Instead, s-nodes could

be compressed using gamma compression [14] or other techniques for compressing small

numbers. Additionally, an IFS system could attempt to recognize and represent more com-

plex encryption patterns, albeit at the cost of added complexity.

3 Integration with an OBSD File System

Although IFS may be used in any type of file system, we present a design to implement

intra-file security for a file system based on Object Based Storage Devices (OBSDs). We

are proposing the use of OBSDs for high-performance network-attached storage devices;

this approach has similarities to Network-Attached Secure Disks (NASD) [3]. An OBSD-

based file system is designed for high-performance computing workloads--precisely the

kinds of applications that benefit from intra-file security. Because OBSDs require strong

security in order to keep data safe in storage and transit [7], we expand the end-to-end

encryption capabilities by incorporating IFS.

OBSD-based storage systems have the potential to improve both file system performance

and functionality by building a high-performance storage system from inexpensive storage

components connected by high-speed networks. The main hardware component of the stor-

age system is an object-based storage device--one or more disks (or other storage devices)

managed by a single CPU and seen by the file system as a single device. Data is distributed

across many OBSDs, with high bandwidth coming from large numbers of concurrently

operating OBSDs.

Each OBSD is responsible for managing and allocating its own storage; requests to an

OBSD are of the form "write (or read) this range of bytes from file X," with low-level

placement of the data and free space management left to the OBSD. High-level information

such as the striping pattern across OBSDs and translation of names to file identifiers are

left to a metadata server (MS), which is accessed by the user only when a file is opened or

closed. This file system design is shown in Figure 3.

The key advantage of OBSDs in a high-performance environment is the ability to delegate

low-level block allocation and synchronization for a given segment of data to the device

on which it is stored, leaving the file system to decide only on which OBSD a particular

segment should be placed. In such a distributed file system, s-nodes are stored physically

near the blocks they describe, avoiding extra traffic to central servers on distributed storage

systems and amortizing I/O usage among the devices. OBSDs use their own allocation poli-

cies to manage local data, including file and s-node data, placing them for efficiency within

physical storage devices. Because s-nodes do not contain secrets, end-to-end encryption

is provided to users without any extra involvement of the OBSD--the OBSD sends all file

data and s-nodes in the clear on insecure networks. The security of encrypted data lies with

the key management policy.

158

High perform_mce backbone
with 10-100 C B/sec aggregate

bandwidth

IMetac ata 1

|Server |

--i

OBSD

Multiple

AccessPaths i [_

to Redundant

Backbone.

i severai Thousand OBsI3S

_ Client Systems

[_ Storage ServerComponents

(/_eram;Ct/?s _ __

--"It-

J

Figure 3: OBSD storage system architecture.

3.1 Authentication and Key Management

An authentication system is required for file system security, regardless of end-to-end en-

cryption capabilities. Since we are focusing on support for intra-file encryption, a full

development of the authentication system is beyond the scope of this paper. However, we

rely on an authenticatien system for distribution of encryption keys, so we briefly describe

how such a system ma_ be implemented.

A major role of a metadata server (MS) is to control access to the file system. When

users wish to open a fle, the MS checks file permissions before granting access. As a

first step, client software authenticates a user's identily, using standard authentication tech-

niques such as Kerbercs [9] or cryptographic hashes [7, 10]. The MS proceeds to check

permission for a requested file operation using the file system's access control mechanism.

However, OBSDs handie read and write requests directly; in order to enforce access rights,

OBSDs must also check identities and permissions as well. The overhead of maintaining

and checking access permissions at each OBSD defeats the high-performance requirement,

so an OBSD uses a mere efficient method to check the validity of a client's request. The

MS generates tokens containing encoded access rights during open requests, and sends

them to clients along with the file's metadata. Clients present these tokens with their re-

quests to OBSDs. By checking the permissions encoded in the token, an OBSD determines

the validity of the request. Tokens are equivalent to capabilities used in NASD for the same

purpose [4, 3]. In IFS, _'_ecurity information is included in the forwarded tokens.

159

Access to encrypted segments is based on IFS group permissions, which we call s-groups.

An s-group contains a list of users and/or groups that may use the key for an encrypted

segment; the creator of an encrypted segment specifies s-group members during the initial

write. A key server (KS) manages s-groups separately from file-access group permissions

normally associated with file services; the goal is to remove management of encryption

from traditional file system administration. The KS is responsible for checking s-group

permissions, and generating and storing keys. From a user's viewpoint, calls to the MS

involve both the MS and the KS, whether they reside on single or concurrent machines.

3.2 File I/O Interface

IFS uses standard POSIX file semantics by instrumenting interface libraries to handle secu-

rity operations transparently. However, supporting encryption requires some new functions

that allow writing of encrypted segments. Applications writing only unencrypted data and

reading any data use the normal write and read function interfaces.

Reading encrypted data is transparent to the user. When reading data, users with a key

see decrypted data when they read data; thus, applications reading data stored with IFS do

not need any modifications, though they must be capable of dealing with garbage data in

the data file--reads from encrypted segments of a file appear as random bits if the user

lacks the proper key. If the user has the necessary key, the file system client transparently

decrypts the file using keys supplied with authentication tokens. Only users with the proper

key may decrypt secure segments and view the contents; the encoding of the token tells the

OBSD whether or not to send s-nodes with data, so extra traffic is avoided when possible.

Under IFS, the interface to the file system is extended to support encrypted writes. En-

crypted segments remain read-only unless the user has encrypted write access, which is

granted through IFS s-group permissions. Even for users with permission, encrypted writes

are explicit. Two new system calls support encrypted writes. One function translates an s-

group specification into an integer identifier. The identifier is used in subsequent calls to

the secure_write function, which is identical to the standard 'C' write function ex-

cept for this additional argument. When writing encrypted segments, the file system client

creates s-nodes for the corresponding blocks, and sends the s-nodes to the OBSD along

with the blocks. When over-writing data in blocks already allocated to the file, the client

must fetch and update the existing s-node (read-modify-write operation).

Unencrypted write requests to file blocks containing encryption must be carefully con-

trolled, because users without encryption rights cannot overwrite the encrypted region of

the block. To protect the integrity of encrypted data, it is impossible for users to write to en-

crypted segments using the traditional write function call. In order to minimize the latency

of unencrypted writes, the OBSD quickly caches all data on writes, and during periods

of inactivity discards changes to encrypted segments before committing the write. Essen-

tially, this makes all encrypted segments read-only unless invoking the secure_write

function. This policy does not impact blocks without encrypted segments, but it effects the

coherency of blocks that do--until the write is fully committed, multiple copies of a block

160

residein the file system.As a trade-offbetweenperformanceand safety,we preferthat
writesto encryptedsegmentsdonotoccurunlessmadeexplicit,evenfor userswith a key.

4 IFS Applications

To support encryption of data within existing unencrypted files that have been migrated

to an IFS file system ,)r written with non-IFS legacy applications, an IFS-capable copy

program can be provided to encrypt the appropriale portions of the file. This program

would take as input an unencrypted file and a specification of the regions to be encrypted.

Databases that use a single large flat-file could easily benefit from IFS by encrypting those

fields of the database that must be kept secret, while still maintaining single-file semantics

for the whole database Most databases support encrypted fields by simply supplying keys

for particular fields; hcwever, this approach requires a reasonable amount of support from

the database system or the database queries to remain transparent to users. By using IFS,

this process could be nade transparent, particularly if databases exchanged information

with the file system.

Many very large files u _ed in military and government scientific work will also benefit from

IFS. Removing the ne_ d to fragment files that naturally require multiple levels of security

will simplify applications as well as data management; no longer will users need to create

several files with different encryption levels and keep track of which ones are related and

how. Eliminating fragmentation ensures high-performance sequential and random access.

Importantly, legacy al_plications can transparently be made IFS-capable, since the data

formats and locations within the files remain unchanged even as portions of the data itself

are encrypted.

IFS may also be used to transfer partial files in a distributed file system, as suggested by

Muthitacharoen et al. [8]. By integrating IFS into a how-bandwidth distributed file system,

users could gain secure access to their files even from slow clients.

5 Related Work

There have been man,, file systems and storage systems that provide higher security by

encrypting files and m4_tadata. Reidel, et al. [11] provide a good framework for evaluating

secure file systems; their work discusses file systems and the security that each provides.

Intra-file security is no: one of their criteria; although they do discuss the granularity of key

protection, the minimum protection unit is a single file.

Some file systems, su_:h as CFS [l] and Cryptfs [15], require users to manage their own

keys. This approach is simple, but is not suitable for IFS because of the sheer number

of keys required [12]. Other systems such as SNAD [7], SFS and SUNDR [6, 5], and

NASD [3] automatica ly manage encryption keys, though they do not permit partial-file

encryption. Moreover. many of these systems, including NASD and SFS, store data on

161

the disk in an unencrypted form, using encryption only for authentication. The techniques

described in this paper are based on those used in SNAD--it provides strong protection by

encrypting data end-to-end, leaving it in the clear only on the client.

Intra-file security is particularly important for large, distributed file systems such as those

enabled by NASD [3] and object-based storage devices (OBSDs). Reed, et al. provide a

method for strong authentication in such an environment in SCARED [10], providing an

excellent platform for both standard security [7] and the intra-file security proposed in this

paper.

6 Conclusions

Secure file systems and distributed storage networks currently permit encryption only on

a per-file or per-directory basis. However, there are many applications that would benefit

from the ability to encrypt data in smaller pieces, using different keys to permit parts of a

file to be read and written by different groups of users.

This paper presents a solution to this problem, by introducing a concept called intra-file se-

curity, and provides a high-level design for implementing it in a distributed file system and

on individual servers within such a file system. Intra-file security uses additional metadata

to maintain information about secure segments, allowing blocks of a file to be encrypted

and decrypted individually on the client. A key management system provides group man-

agement facilities that are well adapted to the hierarchical nature of access to classified

materials present in organizations requiring security.

Acknowledgments

We thank Randal Burns for his feedback and advice, and Ahmed Amer for proof-reading.

We also thank our shepherd, Jack Cole, for his helpful suggestions and patience.

References

[1]

[2]

[31

M. Blaze. A cryptographic file system for Unix. In Proceedings of the First ACM

Conference on Computer and Communication Security, pages 9-15, Nov. 1993.

J. Daeman. Cipher and Hash Function Design. PhD thesis, Katholieke Universiteit

Leuven, Mar. 1995.

G. A. Gibson, D. E Nagle, K. Amiri, J. Butler, E W. Chang, H. Gobioff, C. Hardin,

E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective, high-bandwidth storage

architecture. In Proceedings of the 8th Interational Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS), pages 92-103,

San Jose, CA, Oct. 1998.

162

[41

[51

[61

[7]

[8]

[91

[1o]

[11]

[12]

[131

[141

[151

H. Gobioff, G. Gibson, and D. Tygar. Security for network attached storage devices.

Technical Report TR CMU-CS-97-185, Carniege Mellon, Oct. 1997.

D. Mazi6res, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key man-

agement from file system security. In Proceedings of the 17th ACM Symposium on

Operating System: Principles (SOSP '99), pages 124-139, Dec. 1999.

D. MaziSres and 1). Shasha. Don't trust your lile server. In Proceedings of the 8th

IEEE Workshop on Hot Topics in Operating Svstems (HotOS-VIII), pages 99-104,

Schloss Elmau, Germany, May 2001.

E. L. Miller, D. D. E. Long, W. E. Freeman, and B. C. Reed. Strong security for

network-attached _torage. In Proceedings of the FAST 2002 Conference on File and

Storage Technolo_ ies, Monterey, CA, Jan. 2002.

A. Muthitacharoelt, B. Chen, and D. MaziSres. A low-bandwidth network file system.

In Proceedings of tile 18th ACM Symposium on Operating Systems Principles (SOSP

'01), Oct. 2001.

B. C. Neumann, J G. Steiner, and J. I. Schiller. Kerberos: An authentication service

for open network systems. In Proceedings of the Winter 1988 USENIX Technical

Conference, pages 191-201, Dallas, TX, 1988.

B. Reed, E. Chron, R. Burns, and D. D. E. Long. Authenticating network attached

storage. IEEE Micro, 20(1):49-57, Jan. 2000.

E. Reidel, M. Kal ahalla, and R. Swaminathan. A framework for evaluating storage

system security. In Proceedings of the FAST 2002 Conference on File and Storage

Technologies, Monterey, CA, Jan. 2002.

R Reiher, T. Page G. Popek, J. Cook, and S. ('rocker. Truffles--secure file sharing

with minimal syslem administrator intervention. In Procedings of the 1993 World

Conference on Sy,tem Administration, Networking, and SecuriO,, Apr. 1993.

B. Schneier. Appl, ed Cryptograph3,. Wiley, New York, NY, 2nd edition, 1996.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes. Morgan Kaufmann

Publishers, 1999.

E. Zadok, I. Badu'escu, and A. Shender. Cryptfs: A stackable vnode level encryption

file system. Techr ical Report CUCS-021-98, Columbia University, 1998.

163

Efficient Storage and Management of Environmental Information

Nabil IL Adam, Vijayalakshmi Atluri, and Songmei Yu

MSIS Department and CIMIC, Rutgers University

Newark, New Jersey (17102

{adam, atluri, songmei}@cirmc.rutgers.edu

Yelena Yesha

Department of Computer Science and Electrical Engineering, UMBC

Baltimore, MD 21250

yeyesha@cs.umbc.edu

Abstract

Spatial Data warehouses pose many challenging requirements with respect to the design of the

data model due to the nature of analytical operat_ns and the nature of the views to be

maintained by the spatial warehouse. The first challenge is due to the multi-dimensional nature of

each dimension itself. In a traditional data warehouse the various dimensions contributing to the

warehouse data are simple in nature, each having different attributes. Data models such as the

star schema, fact constellation schema, snowflake schema or the multi-dimensional model, can

therefore, be used to represent the traditional data warehouse. On the other hand, the different

dimensions in a spatial data warehouse comprise of different types of data, each of which is

multi-dimensional in nalure. The current available data models are not adequate for such

domains. In this paper, we propose a data model that is well suited for such domains, called the

cascaded star model that is capable of representing multiple dimensions of a spatial data

warehouse, where each dimension is multi-dimensional. The nature of the queries in such

domains is different from that of traditional data warehouses (such as fly-by of a region), and

therefore we propose a ,;uitable architecture that allows specification of the queries and their

visual presentation.

1. Introduction

In the area of Environmental and Earth sciences, we are concemed with collection, assimilation,

cataloging and dissemination or retrieval of a vast array of environmental data. Environmental

and Earth science computer systems receive their input from various types of satellite images

with different resolutions captured by different sensors, models of the topography and spatial

attributes of the landscape such as roads, rivers, parcels, schools, zip code areas, city streets

and administrative boundaries (all exist in topographic maps), census information that describes

the socio-economic and health characteristics of the population, processed digital terrain models

into a new information product in the form of three-dimensional visualizations of digital terrain

models projected as vid,_o "'fly-bys", and finally infonnation transmitted (almost in real-time)

from ground monitoring ,tations.

The system needs to provide flexible image extraction functionalities, such as hyper-spectral

channel extraction, overlaying, and ad-hoc thematic coloring [4]. Such systems are intended to

serve the evaluation anti formulation of environmental policies by enabling users, including

management and researctaers to query various critical parameters such as ambient air and water

quality and visualize the _sults in a graphical form. In addition to serving decision makers and

165

researchers, these systems are intended to also serve the citizens, thus, enabling any citizen of

any given district or a state to look at his/her county, community, home and be able to obtain

relevant information on such issues as environment, health, and infrastructure, among others.

Such systems should facilitate effective knowledge discovery in a manner tailored to changing

needs and abilities of users, both intellectual and technological.

Consider for example the NASA Regional Application Center (RAC) at Rutgers Center for

Information Management, Integration and Connectivity (CIMIC), which is a joint project

between Rutgers CIMIC, NASA Goddard Space Flight Center (GSFC) and the New Jersey

Meadowlands Commission (NJMC). As a RAC, CIMIC maintains a large collection of satellite

images acquired through various sources. Specifically, the CIMIC-RAC currently stores and

manages satellite imagery from various sources, including:

_ Direct downloads of AVHRR data from polar orbiting satellites, such as NOAA
12, NOAA 14 and NOAA 15, over the Northeast region of the US including New
York and New Jersey;

_ LANDSAT and RADAR data obtained from NASA archives;
_ Hyper-spectral images from the Airborne Imaging Spectrometer for Applications

(AISA) sensor;
_g Value-added products, such as AVHRR NDVI biweekly composites from the

NASA EROS data center; Aerial ortho-photographs provided by various private
companies; and

g_ Value-added products generated by various experts.

In addition to the images from a variety of space borne satellites, other data includes ground

data from continuous monitoring weather stations, and maps, reports, data sets from federal,

state and local government agencies. The problem is how to efficiently manage and store this

diverse type of information and how to effectively serve the diverse set of end users. In

traditional domains such as banking, insurance, and retail industries data warehousing has been

successfully implemented to address this problem (inmon96). In such industries, the problem of

how to design and implement data warehousing has been well researched over the years and is

well understood. In nontraditional domains such as the Environmental and Earth sciences, the

problem of applying data warehousing technology is complex and needs further study.

2. Challenges

Environmental data warehouse is an example of a spatial data warehouse. "Spatial Data

Warehouse is defined as an integrated, subject-oriented, time-variant, and nonvolatile spatial

data repository for data analysis and decision making [8]." A data warehouse may use one of

the data models such as the star schema, fact constellation schema, snowflake schema or the

multi-dimensional model. For example, in a star schema, the data warehouse contains a central

table called the fact table, comprising of the keys of each dimension, and a table for each

dimension. In a spatial data warehouse, the dimensions may include both spatial and non-spatial.

Spatial Data warehouses pose many challenging requirements with respect to the design of the

data model due to the nature of analytical operations and the nature of the views to be

maintained by the spatial warehouse.

166

Thefirst challengeisdueto themulti-dimensionalnatureof eachdimensionitself.In atraditional
datawarehousethevaricusdimensionscontributingto thewarehousedataaresimplein nature,
eachhavingdifferentattributes.On theotherhand,thedifferentdimensionsin a spatialdata
warehousecompriseof differenttypesof data,eachof whichis multi-dimensional.Thevarious
raster images such as satellite downloads, images generated from these satellite images

describing various pararr,.eters including land-use, water, temperature have multiple dimensions

including the geographic extent and coordinates of the image, the time and date of its capture,

and resolution. Other su_ h examples include aerial photographs. The regional maps represented

as vector data also have a temporal dimension as they change over time. The streaming data

collected from various s,msors placed at different geographic locations that sense temperaarre,

air quality, atmospheric pressure, water quality, dissolved oxygen, mineral contents, salinity,

again have both spatial _nd temporal dimensions. Other dimensions include demographic data,

census data, traffic patterns, and many such as these.

The second challenge is due to the nature of the queries posed to the scientific warehouses. As

the queries typically inxolve accessing multiple dimensions, each of which in itself is multi-

dimensional. We illustrate this with the following examples:

Example I: A user may want to look at the changes in the vegetation pattern over a certain

region during the past 10 years, and see their effect on the regional maps over that time period.

This involves layering the images representing the vegetation patterns with those of the maps

whose time intervals of validity overlap, and then traverse along this temporal dimension with the

overlaid image. In the taditional data warehouse sense, this amount to first constructing two

data cubes along the time dimensions for each of the vegetation images and maps, and then

fusing these two cubes h_to one. One may envision fusing of multiple cubes. For example, if the

user also wants to obserce the changes in the surface water, population, etc., due the changes in

the vegetation pattern ov zr the years, fusion of such multiple cubes is needed.

Example 2: Another u,,.er may want to simulate a fly-by over a certain region stating with a

specific point and elevation, and traverse the region on a specific path with reducing elevation

levels at a certain speed, and reaching a destination, effectively traversing a 3-dimensional

trajectory. This query involves retrieving images that span adjacer_ regions that overlap the

spatial trajectory, but with increasing resolution levels to simulate the effect of reduced elevation

level. Another importanE aspect of serving such queries additionally requires controlling the

speed at which they are displayed to match the desired x elocity of the fly-by.

3. Spatial Database System Architecture

The ingestion, processing and storing of satellite images in CIMIC is done as shown in Figure 1.

Images are downloaded from NOAA satellites with the Quorum HRPT antenna and receiver

systems. Once a day the new raw image files are moved to oversized hard drives on a UNIX

HP platform. At the same time, a new elements.dat file with ephemeris data is captured through

the web and placed in tae PC running the QTrack ingest software, which assures that images

ingested later on will h_ve updated orbital elements information and require less navigational

correction.

167

NOAA 12, 14, 15

t_J

Direct Readout

AVHRR

t
elements .dat

Downloaded daily

from US Navy

metadata thumbnails

NASA Rapid
Application Tool

Region Of Interest

Figure 1: Preprocessing and Ingesting of Satellite Images

On the HP platform, raw files are fist classified by size. Files less than 20rob are automatically

eliminated, and the remaining raw files are converted to level-lb by a quick-ingest routine, and

then compressed. Level- 1b files then go through the remap routine where images are clipped to

a specific area of interest (New Jersey and surroundings) and projected to the Mercator

projection. The resulting remap files are saved in an internal format (RAT format) and as bitmap

files. These bitmap files are then classified using normalized regression routine, which employs a

tool developed by NEC. Specifically, images with high regression coefficient (0.80 or greater)

are classified as cloud free for the region of interest and flagged as so in the database. The RAT

format files that emerge fi'om the remap tool are used to create NDVI's. These NDVI's

populate the database and become available to users through the web, and bi-weekly collection

of NDVI's are made into a single NDVI images composite and are also available through the

web. Due to the limited use of DBMS extenders for handling spatial data, we have

implemented the database in two separate modules: One the relational DBMS to store metadata

and thumbnail of images, and another a spatial data/flat file for images. Image files are tied with

the DBMS by linking the image-id in the database with individual image files. The metadata of

the images is maintained by an Oracle database through which image thumbnail images can be

obtained. These images are indexed using an SS-Tree for enhancing the response time for the

queries and insertions.

Interfaces are provided to querying the database based on time of capture, particular satellite or

sensor instrument, type of image such as raw, composites, NDVI, water, temperature, etc.

Essentially, users are provided with the image-ids, and the actual image is retrieved by clicking

on the relevant image-id. Currently, it does not provide powerful capabilities to let users

168

perform complex queries for advanced data analysis, such as trend or pattern analysis. In

addition, no visual display tools are available to allow users to view image pattern changes over

certain period of the r, mge queries displayed with a speed specified by the users, nor

capabilities to handle quedes that simulate a fly-by over certain region as described in Examples

1 and 2.

Currently it uses ArclMS from ESRI to process the image files (in .shp format), including

layering the images, populating the metadata associated with the images, coloring, and

composing fly-bys. These are then published on the web so that users can view them, zoom-

in/out, move in differenT directions (north, south, east, west), or get associated metadata by

clicking on a specific place. However, this is accomplish_ manually only for a pre-specified set

of queries. Our goal is to accommodate ad-hoc queries by employing a data warehouse. As a

result, for example, the above-mentioned fly-bys can be automatically generated upon users'

request.

4. The Spatial Data Warehouse System Architecture

Our system comprises c f a friendly geographic user interface, a powerful query processing

engine that is capable of supporting various OLAP operations, an output rendering engine, and

an spatial data warehouse, as shown in figure 2. Our data warehouse is based on the cascaded

star model, described in _ection 6.

..I Web Based User Interface___"_ Environmental __"_'-

_....Processil_gData Warehouse

Figure 2: System Architecture

The data from different repositories, such as metadata databases, image database, databases of

real-time streaming data from environmental sensors, etc., are first extracted, validated,

transformed and then firally integrated, before loading into the warehouse. The data in the

warehouse is periodicalD refreshed to reflect updates at the sources and purged from the

warehouse, perhaps onto slower archival storage [10].

In general, the reason one builds a data warehouse is to construct data in a structured way and

to allow pre-processing so that users can turn the data into useful knowledge quickly.

Operational databases maintain state information, while data warehouses typically maintain

historical information, and as a result, data warehouses tend to be very large and grow over

169

time.Hence,the sizeof the data warehouse and the complexity of queries can cause queries

process to take very long to complete, which is unacceptable in most decision support system

environments. Also, a major performance challenge for implementing query processing and

output representation is how we construct data warehouse in an efficient way.

4.1 Constructing an Efficient Data Warehouse

There are many ways to achieve data warehouse performance goals. Query optimizations and

query evaluation technique can be enhanced to handle aggregations better, or using different

indexing strategies like bit-mapped indexes and join indexes, etc. We consider implementing our

GIS warehouse in the following two specific aspects to facilitate construction of the efficient

data warehouse.

One commonly used technique is to selectively materialize/pre-compute frequently used queries.

If we can do this pre-computation effectively and efficiently, then we can store many frequently

accessed historical results in the data warehouse combined with different time periods, different

resolutions, different aggregations, and different views, etc, at users' interests. In this way, the

output processing can be achieved very fast, and sometimes automatically without any more

computation efforts.

Firstly, let us look at the pre-computation for non-spatial data that are stored in RDBMS and

are associated with spatial data. Picking the right set of queries to materialize is a nontrivial task.

For example, we may want to materialize a query that is relatively infrequently used if it helps us

answer many other queries quickly. We adopt the linear cost model from [8], where the data

are stored in multi-dimensional data cubes, and each cell of the data cube is a view consisting of

an aggregation of interest. The values of many of these cells are dependent on the values of

other cells in the data cube. One common and powerful query optimization technique is to

materialize some or all of these cells rather than compute them from raw data each time. A

lattice framework is used to express dependencies among different cells in the total or partial

order, and a greedy algorithm that works dY this lattice determines a good set of cells to

materialize [9]. We all know that dimensions of a data cube consist of more than one attribute,

and the dimensions are organized as hierarchies of these attributes. For a simple example, the

time dimension can be organized into the hierarchy: day, week, month, and year as follows:

Day

Week" Month

Ye!r

None _

Figure 3: Sample Time Hierarchy

In the presence of above hierarchy, the dependency relationship is obviously seen. Consider a

query that groups on the time dimension only, and we can have the following three queries

possible: (day), (month), (year), each of which groups at a different granularity of the time

dimension, also if we have total available for by month, we can use the results to compute the

170

total grouped by year. ,3enerally we selectively materialize the data cube based on query

dependencies introduced by the conception of hierarchies.

Secondly, it is also esser tial to pre-process spatial data efficiently, which are more complicated

than computing non-spaial data. For example, we may pre-process digital maps at different

resolution levels and store them in the data warehouse, and users can combine them randomly

to stimulate a fly-by, or pre-overlay the images representing the vegetation patterns with those

of the maps having tile same time intervals of validity, or pre-group a multi-color coded map to

emphasize a particular category, or pre-interpolate spatial data over a large area which refers to

the process of deriving ,Hevation data for points where no data samples have been taken, etc.

There is a big challeng,_ for our project since our pre-processing is based on users' most

frequent access interests :hat have to be updated frequently to meet changes.

Another challenge is that the above partial or total order relationship may not be suitable for

spatial data dependency. For example, there is no dependency relationship among resolutions,

and we can't compute high-level resolution based on low-level resolution or vice versa, or we

can't overlay two image_; based on another overlaid image. Finding a dependency relationship

among spatial data to av(,id processing every raw image from scratch is our next step.

Another technique is tc construct our data warehouse model in a different way that is an

extension of the star schema, in which each dimension itself has a star schema of its own. We

will explore this in detail ia tile following section.

4.2 The User Interface. Query Processing and Output Rendering Engines

A web based high-level user interface to a GIS must provide users with the necessary tools to

store, retrieve, and anal3ze data so that they can perform their application-specific functions.

More importantly, it is u.'_edto perform complex data analysis from the data warehouse without

writing programs and should be comprehensive enough to let users get detailed analysis results

and knowledge.

Moreover, after the translated SQL queries are processed in the data warehouse, an output will

present multi-dimensional views of data to various front-end tools through different output

processing engines. For example, OLAP servers can execute all OLAP operations, such as

roll-up, drill-down, dicir_g and slicing, and generate results for data analysis and reporting,

decision making strategies and advanced data mining. At the same time, users could require the

data representation as the generation of a fly-by video with a trajectory, elevation and velocity.

When a spatial database is to be used interactively, graphical presentation of spatial data types

(SDT) values in query results is essential. It is also important to enter SDT values to be used as

"constants" in queries via a graphical input interface. The goal of querying is in general to obtain

a "tailored" picture of the space represented in the database, which means that the information

to be retrieved is often lot the result of a single query but rather a combination of several

queries. For example, in GIS application, the user may want to see a map built by graphically

overlaying the results of several queries. Therefore, a user interface for output presentation

should have at least lwo sub-windows: (1) a text window for displaying the textual

171

representationof a collectionof objects,containingthemetadataor alphanumericattributes of

each spatial object, (2) a graphical window containing the overlay of the graphical

representations of spatial data of several object classes or query results, which could be a

generation of a fly-by video. We will consider implementing our system in this way in the near
future.

The query engine translates the user inputs as SQL queries that will be inserted into data

warehouses for further processing. The output representation engine is dealing with data

representation using existing software such as PIT and IDRISI or newly developed applications.

This part is mainly complicated by users' requirements because there are a lot of decision-

support queries that are much more complex than OLTP queries and make heavy use of

aggregation, and this is basically OLAP operations. Besides this, most users need some specific

visualization results such as fly-by over a certain region stating with a specific point and

elevation, and traverse the region on a specific path with reducing elevation levels at a certain

speed, and reaching a destination, effectively traversing a 3-dimensional trajectory, or a fly-by

over a certain time period for vegetation pattern change within New Jersey area, which is a

process of image manipulation and representation.

5. Traditional Data Warehouse Models

A number of data models have been proposed to conceptually model the multi-dimensional data

maintained in the warehouse. These include the star schema, the snowflake schema, and the fact

constellation schema. Since our data model, the cascaded star model, is an extension of the star

model, in the following, we present these three models with examples, and bring out the

limitations of these models in representing the data in our spatial data warehouse.

5.1 The Star Schema

Perhaps, star schema, fh'st introduced by Ralph Kimball, is the earliest schema used to model

the data warehouse implemented as a relational databases. In this schema, the data warehouse

contains a large central table (fact table) containing the bulk of data (dimensions) with no

redundancy, and a set of smaller attendant tables (dimension tables) with one for each

dimension. The schema graph resembles a starburst, with the dimension tables displayed in a

radial pattern around the central fact table, as shown in Figure 4, where A is the fact table, and

b, c, d, e and f are dimensions and represented by dimensional tables.

Figure 4" The Star Model

Note that in the star schema, only one dimension table represents each dimension, and each

dimension table contains a set of attributes and joins with fact table by common keys when

implemented as a relational database. Moreover, the attributes within a dimension table may

form either a hierarchy (total order) or a lattice (partial order). Currently, most traditional data

172

warehouses use a star _,chema to represent the multi-dimensional data model as it provides

strong support for OLAP operations.

To illusWate, in the following, we provide an example o1"the implementation in star schema [8].

Suppose the multi-dimersional data for the weather in northeast region in USA consists of four

dimensions: temperatur.% precipitation, time, and region_name, and three measures:

region_map, area, and ,zount, where region_map is a spatial measure which represents a

collection of spatial pohtters pointing to corresponding regions, area is a numerical measure

which represents the sum of the total areas of the corresponding spatial objects, and count is a

numerical measure which represents the total number of base regions accumulated in the

corresponding cell.

The following figure illuslrates the implementation for a star model in this case:

Temoe: ature

Ran _,e

Descri _tion

ation

Ran _,e

Descri 9tion

Region_name

Time \

Temperature_

/ Precipitation "_

Region_map

Area

Count

Figure 5: A sample star model

Region name

District

City

Region

State

Time

Day

Month

Year

Season

The following tables stow some sample data set that maybe collected from a number of

weather districts tested ir northeast of USA.

Region_name Time Temperature Precipitatio

n

All1 02/2301 33 14

BIll 02/24,01 41 15

.°.

°°.

°,,

Re_ion_name rict

AIII A

Cit_¢

Flushing

Edison

Region State

111 NY

Blll B Ill NJ

Month xt ear Season

Time I Day

02/23/01 23 February

02/24/01 24 Februar-/¢

2001 Winter

2001 Winter

Temperature33 I Range...1211
41

Description

Chill;¢

Mild cold

173

Precipitation Range Description

1.4 21 Middle

1.5 2 2 Middle

From this sample, we can see that a star model consists of a fact table with multiple dimension

tables, and the fact table joins the dimension tables with different keys. In this example, all

attributes in each dimension table are only one-dimensional and can be expressed completely in

one table. Our question is: if some or all of the attributes in the dimension tables are also multi-

dimensional, i.e., one attribute in one dimension table has multiple attributes associated with it,

how can we implement it in this model? The answer is impossible.

5.2 The Snowflake Schema

Snowflake schemas provide a refinement of star schemas where the dimensional hierarchy is

explicitly represented by normalizing the dimension tables, and therefore further splitting the data

into additional tables (see Figure 6). Such a table is easy to maintain and saves storage space

because a large dimension table can become enormous when the dimensional structure is

included as columns.

Figure 6: The Snowflake Model

However, only some dimensional tables are normalized and this normalization reduces the

effectiveness of browsing since more joins will be needed to execute a query. When applied to

spatial attributes for each dimension table in our case, it is obviously not well suited.

5.3 The Fact Constellation Schema

Sophisticated applications may require multiple fact tables to share dimension tables. The

dimensions of this expanded star schema can be normalized into a snowflake schema. These

multiple fact tables can separate the detail and the aggregated values instead of maintaining a

single and huge fact table, which may speed the queries processing. See Figure 7 for this

schema, where fact table A and B share the dimensions h and i.

c-7 . 0-f
i

Figure 7: The Fact Constellation Model

174

However, there are some disadvantages of using the facl constellation schema. For example, for

data warehouse with higl cardinality, i.e. high number of hierarchy, numerous fact tables must

be created, which increase the complexity of the design. Furthermore, for spatial oriented

attributes for each dime:lsion table, only one dimension table is not enough for holding the

properties of each attribt te.

6. The Cascaded Star Model

In this section, we present an outline of our spatial data warehouse model, called the cascaded

star schema, which is fun extension of the star schema, where each dimension itself has a star

schema of its own. There are a number of research studies in the area of spatial data

warehouses (see the refi,'rence list). The work proposed by Han et al. is closely related to our

work. Hart et al. [8,9] study the problems associated with the design and construction of spatial

data cubes. It distinguishes the various dimensions in the spatial data warehouse as non-spatial,

spatial-to-non-spatial, spatial-to-spatial, based on how they transform when that dimension is

generalized. They provide how the various operations such as roll-up, drill-down, slicing and

dicing, and pivot can be carried out. While we recognize that each spatial dimension in a data

warehouse in itself is multi-dimensional and argue that the data warehouse model need to be

enhanced to handle this. The cascades star schema is shown in Figure 8, where A is the fact

table, and b, c, d, e and f are dimensions that are also multi-dimensional.

,,j? ../"
b

I
Figure 8: The Cascaded Star Model

The multi-dimensional n_mre of each dimension is illustn, tted with an example in figure 9. In here,

the fact table comprises of the various dimensions of the spatial data, which include land-use,

temperature, water and _ector maps. As can be seen, each of these dimensions in turn is multi-

dimensional, represented as a star. To illustrate, the land-use dimension comprises of a fact

table of its own with c imensions time, spatial and altributes, where the time dimension is

comprised of attributes year, date and time of capture of the image; the spatial dimension is

comprised of the x, y coordinates of the lower left hand and comer and the upper right hand

175

comer of the region covered by the image, and the resolution; the attributes dimension is

comprised of the amount of vegetation, developed, barren, forested upland, etc. in the image.

Similar to land-use, as can be seen from the figure, themes and water dimensions are also multi-

dimensional in nature.

In the paper, we will present our detailed data model, and introduce the necessary primitives

that enable the evaluation of different queries. We will also discuss what the different warehouse

operations such as drill-down, roll-up, mean in the semantic sense in the cascaded star schema,

and show how they can be carried out. We will present the architecture of our prototype and

the guidelines for implementation.

f

/,
(LX, LY)

Vector Map

Themes

Time

Spatial

Types

Li

f
Land-use

Temperature

Water

Vector Map

olo

J
(UX, UY)

Resolution

Land-use

f

Category

Time

Spatial

Attributes

Water

Image ID "

Time

Spatial

Attributes
J

i
GWTInde

Chlorophy /

Temperature)

Resoluti_)

Vegetation

Developed

Barren

Forested

Etc.
J

Figure 9: A Sample Cascaded Star Model

The following tables show some examples of these dimensions:

Fact table:

Landuse Temperature
44

Water Vector Map

Abc 221

......... • °°

111

°°°

o°°

°°°

176

One dimension table: "Vector Map"

Vector_map

111

Themes

Ne_,_ Jersey

Time

01

Spatial

A

Types

,..

Another dimension table for an attribute "Time" in

Time

01

,,,

"Vector Map%

Y Jar Date

2000 3/23/00

Timestamp

12:00am

In the above example, we can see that a fact table is joined with several dimension tables as in

the star model, and each attribute in the dimension tables is self multi-dimensional with another

dimension table joined with it. In this easy way, we implement a cascaded star model for each

multi-dimensional attribute in the dimension tables, which explicitly provides support for attribute

hierarchies. However, the previous star schema cannot accomplish such multi-dimensional

attribute structures in a single way.

We want to address the difference between a cascaded star model and a snowflake model.

Someone may get the false impression at first sight that there is no big difference between these

two models since they t,oth have multiple extensions fi)r some spatial dimensions. However, a

snowflake model just tTormalizes some dimensions to reduce a big dimension table for easy

maintenance and storage saving, whereas a cascaded star model claims each dimension itself is

multi-dimensional by the nature.

6.10LAP Operations on the Cascaded Star Model

Now let us examine sone popular OLAP operations, i.e., roll-up, and drill-down, slicing and

dicing, and pivoting, _nd analyze how they are performed in the spatial data cube we

constructed in a cascaded star model. OLAP are traditional data warehouse operations that

provide users to view _:lata from different perspectives, hence, OLAP support user-friendly

environment for data amlysis and prepare for advanced data mining process. In the system

architecture we propose, t, it is part of the output rendering engine.

These operations have)een discussed intensively in the traditional data warehouse and spatial

data cube in star model 17]. Our concentration is that how they can be efficiently operated in the

star cascaded model with selectively materialization, which means aggregating and generalizing

data from multi-dimensonal attribute tables. Consider the example 1 we mentioned above. A

user may want to look at the changes in the vegetation pattern over a certain region during the

past 10 years, and see their effect on the regional maps over that time period. This query

involves two very corrunonly used querying operatiorts of OLAP: "drill-down" and "roll-up".

We constructed the time hierarchy with a partial order in the above and they underlie these two

operations. Drill-down s lhe process of viewing data at progressively more detailed levels, for

example, a user drills down by first looking at the vegetation pattern per year and then

comparing the vegetation pattern by specific month within different years. Roll-up is just the

opposite, which is the 9rocess of viewing data in progressively less detail. In roll-up, a user

starts with the vegetatien pattern on a given month, then looks at the total pattern in that year,

and finally, compares tae patterns among 10 years. With selective pre-computation of certain

177

data cells in the multi-dimensional data cube, such as vegetation pattern for each month within

each year, we can easily process this query.

7. Related Work

Research in data warehousing is a relatively new area. In the following we review the research

contributions as well as the prototypes that are most relevant to our work. Han et al. [8,9]

proposes a spatial data warehouse model in which both spatial and non-spatial dimensions and

measures exist. It proposes spatial data cube construction based on approximation and selective

pre-computation spatial OLAP operations, such as merge of a number of spatially connected

regions. The pre-computation involves spatial region merge, spatial map overlay, spatial join,

and intersection between lines and regions.

Microsoft TerraServer [2] stores aerial, satellite, and topographic images of the earth in a

database available via the Intemet, where the users are provided intuitive spatial and text

interfaces to the data. Basically terabytes of "Intemet unfriendly" geo-spatial images are

scrubbed and edited into hundreds of millions of"Internet friendly" image tiles and loaded into a

data warehouse. The TerraServer adopts a "thin-client and fat-server" model, which consists of

three tiers: the client tier, the application logic tier, and the database system tier. Users can

search the data warehouse by coordinates and place names, and can easily view the images

with different resolutions by simply clicking on it. The application logic responds to the HTTP

requests and interacts with the back end database to fetch the results. The database is a SQL

server 7.0 RDBMS containing all images and meta-data of images that are pre-processed and

stored, for example, all levels of the image pyramid (7 is maximum) are pre-computed and

stored. However, this system does not provide powerful and comprehensive image pre-

processing tools such as spatial OLAP for advanced spatial data analysis. Moreover, the

RDBMS integration with image repository has inherer_ problems, as SQL server 7 stores

imagery in JPEG or GIF format which does not have much flexibility in handling spatial data.

However, none of the prior researchers recognize that each dimension in a data warehouse in

itself is multi-dimensional. As a result, much of the work in spatial data warehousing is based on

the star model. However, this work does not address the issue of the nature of spatial data
warehouse.

8. Conclusions and Future Research

In this paper we focused on the problem of applying data warehousing technology in order to

efficiently manage, store as well as effectively serve users of environmental and earth science

information centers. An example of such centers is the Regional Application Center, which is

collaboration between NASA, Rutgers CIMIC and New Jersey Meadowlands Commission

(NJMC). In this paper, we recognize that environmental data warehouse differs from that of a

traditional data warehouse in that, each dimension in itself is multi-dimensional in nature. We

have proposed a new data model, called the cascaded star model to accommodate this. In this

paper, we have provided a limited treatment to the OLAP operations. Our future work includes

formalizing the necessary primitives that enable the specification and execution of queries, and

the semantics of various warehouse operations including, drill-down and roll-up and the

evaluation of these operations.

178

9. Acknowledgment

This work is supported ia part by the Meadowlands Environmental Research Institute, Rutgers

University.

References

[1] Nabil R. Adam, _ryya Gangopadhyay, "Database Issues in Geographic Information

Systems", Kluwer Academic Publishers, 1st edition, 1997.

[2] Tom Barclay, Jirn G_ay and Don Slutz, "Microso_ TerraServer: a spatial data warehouse,"

Proceedings of the 2000 ACM SIGMOD on Management of data, pages 307-318.

[3] Peter Baumann, "Web-enabled Raster GIS Services for Large Image and Map Databases,"

Proceedings of the ACM DEXA2001, pages 870 - 874.

[4] Wendolin Bosques, Ricardo Rodriguez, Angelica Rondon and Ramon Vasquez, "A Spatial

Data Retrieval and Irrage Processing Expert System for the World Wide Web," 21st

International Conference on Computers and Industrial Engineering, 1997, pages 433-436.

[5] Ron Briggs, "NSDI Demonstration Project: Final Report",

http://www.bruton.utdalLls.edu/research/usgs/usgsframe.html

[6] Volker Coors, Volker Jung, "Using VRML as an Interface to the 3D Data Warehouse",

Proceedings of the th,'d symposium on Virtual realio, modeling language, 1998, Page

121-129.

[7] Martin Ester, Hars-Peter Kriegel, Jorg Sabder, "Knowledge Discovery in Spatial

Databases", Invited Paper at 23rd German Conf. on Artificial Intelligence (KI '99), Bonn,

Germany, 1999.

[8] Jiawei Han, Nebqisa Stefanovic, and Krzysztof Koperski, "Object-Based Selective

Materialization for Efficient Implementation of Spatial Data Cubes ", IEEE Transactions on

Knowledge and Data Engineering, 12(6): 938-958, 2000.

[9] J. Han, N. Stefanovic, and K. Koperski, "Selective Materialization: An Efficient Method for

Spatial Data Cube Cons_-uction", Proc. 1998 Pacific-Asia Conf. on Knowledge Discovery and

Data Mining (PAKDD'Cj8), Melbourne, Australia, April 1998, pp. 144-158.

[10] Venky Harinarayan, Anand Rajaraman, and Jefferey D. Ullman, "Implementing Data

Cubes Efficiently", Pro_'eedings of ACM SIGMOD Int'l. Conf. on Management of Data,

Montreal, Canada, June 1996.

[11] R. Holowczak, N. Adam, F. Artigas, and I. Bora, "Data Warehousing for Environmental

Digital Libraries." To appear in Communications of the ACM, 2002.

[12] N. Widmann, P. B&umann, "Towards Comprehensive Database Support for Geoscientific

Raster Data," Proceedings of ACM-GIS'97, Las Vegas/USA, November 1997.

179

Indexing and selection of data items in huge data sets by constructing

and accessing tag collections

S_ bastien Ponce

CERN *

LI-Cb Experiment

sebast_en.ponce@cern.ch

tel + i-41-22-767-2143

Pere Mato Vila

CERN *

LHCb Experiment

pere.mato@cern.ch
tel + 1-41-22-767-8696

Roger D. Hersch

Ecole Polytechnique

Frdrrale de Lausanne t

Computer Science Department

RD.Hersch@epfl.ch

tel +1-41-21-693-4357

fax + 1-41-21-693-6680

Abstract

We present here a new way of indexing and retrieving data in huge datasets having a high

dimensionality. The proposed method speeds up the selecting process by replacing scans

of the whole data by scans of matching data. It makes use of two levels of catalogs that

allow efficient data preselections. First level catalogs only contain a small subset of the

data items selected according to given criteria. The first level catalogs allow to carry out

queries and to preselec_ items. Then, a refined query can be carried out on the preselected

data items within the ftll dataset. A second level catalog maintains the list of existing first

level catalogs and the type and kind of data items they are storing.

We established a mathematical model of our indexing technique and show that it consider-

ably speeds up the access to LHCb experiment even! data at CERN (European Laboratory

for Particle Physics).

1 Introduction

Indexing and data selection in a huge data set having a high index dimensionality is one of

the key issue in the domain of data management. Recent papers on the subject address this

*CH-1211 Geneva 23, S_vitzerland

tCH-1015 Lausanne, Switzerland

181

problem in specific cases such as spatial databases [6, 5, 7], similarity searches [5, 1, 8]

or string matching [4] but do not offer global solutions. Moreover, existing methods are

outperformed on average by a simple sequential scan when the number of dimensions is

larger than approximately ten[13].

On the other hand, the variety of useful selection criteria on a given set of data is far from

being infinite. They can usually be reduced to a small number of indexes, say 20 to 30

maximum (which is already a very high dimension). Thus, from all values contained in

a data item (tens of thousands in some cases), only this very reduced subset of 20 to 30

values is relevant for the selection criteria.

This property is used to define a new indexing method based on two levels of catalogs. This

method greatly speeds up the linear selecting process by replacing scans of the whole data

by scans of matching data. Data is efficiently selected using both server side and client side

preselections and the power of the SQL language.

Section 2 presents the context of this work, i.e. the LHCb experiment at CERN and its

requirements in terms of data indexing and retrieval. Section 3 presents search results in the

domain of data indexing and emphasizes their respective strengths and weaknesses. Section

4 presents the proposed indexing schema and shows how it can be used efficiently for data

retrieval. Section 5 evaluates the performance of the new indexing method compared to

sequential scan i. Section 6 draws the conclusions.

2 Context

The work presented here is based on studies made at CERN (European Laboratory for

Particle Physics) in the context of the LHCb [10] experiment. We present here briefly the

problem and the requirements we had.

2.1 The LHCb experiment

LHCb [10] is the name of one of the future Large Hadron Collider (LHC) experiments. Its

primary goal is the study of the so called CP Violation [11]. This physical theory suggests

that, in the world of subatomic particles, the image of a particle in a mirror does not behave

like the particle itself [9]. One of the fundamental grounds of this effect is the existence of

the bottom-quark and its cousin the top-quark. This is precisely this bottom-quark, under

the form of the B-meson that the LHCb experiment intends to study. The only way to pro-

duce particles like this meson is to collide other high energy particles (accelerated protons

in the case of LHC). This collision will produce hundreds of new particles among which

the physicists will try to detect B-mesons and to measure their parameters and behavior

(especially the way they decay).

1Sequential scan is besides our method the only method which, to our knowledge, fulfills our requirements

182

2.2 Some figures

LHC will let bunches of protons collide every 25 ns, i.e. at a frequency of 40 MHz. Such

a collision is called an event and creates lots of particles (some hundreds). The different

detectors constituting I,HCb are able to detect all created particles and to specify their

energy and momentum The global output is about 1 MB of data per event across 950000

channels. This yields 4_) TB of data every second !

Most of this data will not be stored since more than 99,9999% of it is not interesting.

Actually, the detector his a four level trigger system lhat allows a reduction of the data rate

from 40 TB/s to 20 MB/s per second, which is two million times less. This factor is due

to both a reduction of the event size to the order of 1!)0 KB and to a reduction of the event

rate to 200 Hz. Assuming that the LHC will run 24 hours a day and 7 days a week, LHCb

will produce an order of 10 l° events per year, which is one petabyte (1 PB = 1015 bytes) in

term of data size.

Table 1 summarizes the figures concerning the data being saved, indexed and later retrieved

by physicists for analysis.

Size of a data item 100 to 200 KB

Nb ofilems l0 '_ to 10 I° per year

Global _ize of the database _ 1015 bytes = 1 PB per year

Data it{ ms input rate 200 Hz

Data input rate 20 to 40 MB/s

Table 1: Figures concerning LHCb data

2.3 Data selections

The analysis by physicists of the LHCb data is rather specific. It is mainly based on an

iterative process consis :ing in selecting some data items (typically in the order of 106) with

rather complicated sele.'tion criteria, downloading the items, running some computation on

them and modifying the selection criteria. A criterion may for example make use of the

energy of the event, of the types of particles involved or of the number of decays. The

number of iterations is rather small (in the order of 10) but the selection of the data still

appears to be the key o _the physics analysis.

Another issue is the number of indexes that a given criterion uses. This is typically in the

range of 10 to 30 pararr eters with a mixture of numeric, boolean and strings. These indexes

are not always the same for all criteria but a few number of criterion types can be defined

(less than 10) for whica the set of parameters is fixed. Due to the high dimensionality of

the event data (10 to 3') indexes), up to now, at CERN, the only data selection algorithm

was a linear scan of the whole dataset.

183

3 Related Work

There are not many research approaches addressing the issue of indexing generic data in a

high dimension space. Weber et al [13] show that there exists a dimension over which any

algorithm is outperformed by a sequential scan. Experimentations show that the sequential

scan outperforms the best known algorithms such as X-trees[2] and SR-Trees[5] for even a

moderate dimensionality (i.e. _ 10).

These two algorithms are based on data partitioning methods. The ancestor of the data

partitioning method is the R-tree method [3] which was further developed under the form of

R*-Trees [6]. However, these data partitioning methods perform poorly as dimensionality

increases due to large overlaps in the partitions they define. This is due to exponential

increase of the volume of a partition when the number of dimensions grows.

The SR-Tree method tries to overcome this problem by defining a new partition schema,

where regions are defined as an intersection of a sphere and a rectangle. The X-Tree

method, on the other side tries to introduce a new organization of the partition tree which

uses a split-algorithm minimizing overlaps. The results are good at low and moderate di-

mensions but are outperformed by a sequential scan for dimensions larger than 10.

4 A two level indexing schema

The aim of our proposed schema is to allow most of the selection to be carried out using

catalogs (tag collections) that contain only a part of the data items and, for each item, only

a subset of its values (a tag). Several catalogs are built, each for a different type of query.

This allows to perform a very efficient preselection of the items before accessing the real

data items.

4.1 Tags

A tag is a subset of a data item comprising several parameters plus a pointer on this data

item. A pointer is simply the information needed to find and retrieve the data item, be it a

regular pointer (memory address), a file name, an URL or something else.

A tag contains the few values (also called parameters) of the data item that are used as

selection criteria. For a given criterion, or even a given type of criterion, the number of tag

values is small (10 to 30) which results in a tag size of 10 to 200 bytes. For example, in the

case of some physics events, one may want to include in the tag the energy, the nature of

the event and the number of particles involved.

Several types of tags can be defined, with different sizes and contents, even for the same

data item. Different tags will point to different subsets of the data items and correspond to
different criteria.

Tags are small, well structured objects that can be easily stored in a relational database.

184

Thus, they can be searc_aed using the power of SQL-like languages. The storage of tags in

a relational database is trivial : each type of tag is stored in a different table, whose columns

are the different values included in the tag plus one for the pointer to the real data item. The

data item itself does no1 need to be part of a database.

Tags will be used to m_ke preselections without loading the data items, which reduces the

amount of loaded data by a factor of 103 in the case of LHCb.

Tag Collection "TC 1" List of Ta_ Collections
Data items

ptr xl ... xn name location type
item 101 "_.

TCl J N
item 102 -- _ \

item n 1

TCn/ /

Data items

item 201

item 202

item n2

Tag Collection "TCn"

ptr yl ... yp
I

I

Tag types

name description

typel xl xn-

typek yl yp_

Figure 1: Structure of the tag collections

4.2 Tag collections

As explained above, tags are subsets of data items. A tag collection is a set of tags, all of

the same type. It corresponds to a set of data items but with only a subset of the data items

values. The values therlselves fulfill some criteria, such as being in the interval between a

minimal and a maximal value. Thus, two different tag collections may correspond to two

different subsets of data items, even if they use the same set of values (type of tags). These

subsets may of course overlap.

Tag collections are sto_ed in a relational database as a table, where each line is a tag and

columns correspond to the values contained in the tags (Fig. 1). The tag collections form a

list of tag collections, each with each associated tag type.

Since tag collections oaly contain tags for a given subset of the data items, they act as a

first preselection on dal a. For example, in the LHCb experiment, a collection of tags is in

the order of 105 smaller than the database, i.e. around 10 GB. A factor 103 is due to the

tag size (section 4.1) ar d another 102 factor comes from the fact that, on average, less than

185

1% of the data items have a tag in a given collection, i.e. tags whose values are within the

predefined ranges associated to that collection. Thus, a collection has typically 107 to 108

entries.

Collections can be defined by any user or group of users who wants to be able to use a

new selection criterion. The creation of a new collection may either require a scan of the

full set of data items or is extracted as a subset from another collection. Scanning the full

set of data items is time consuming but will be far less frequent than the selection of data

items. We expect that there will only be 10 to 20 "base" tag collections in LHCb. All other

collections will be subsets of base tag collections.

4.3 Selection process

By selecting tags in tag collections instead of selecting directly data items, there is an

immediate gain. Only data items of interest are loaded instead of loading all items for each

selection.

This is specially interesting in the case that data items are not located in a database but in

regular files and loading a data item requires accessing a file containing many items. With

a pointer to the data item within the file, the item of interest is directly accessed and loaded.

Such a strategy of storing the actual data in regular files may actually be applied to many

problems since database management systems cannot handle petabytes of data easily.

Client Tag Server

3

7

P

10-100 GB

Data Server

>IPB

Figure 2: Data selection process

Furthermore, the 2-level indexing schema presented here offers a very powerful and flexible

way of applying various preselections allowing to reduce both the amount of accessed data

and the network traffic. The complete selection process is shown in Figure 2.

The steps involved in the selection process are the following :

1. The client selects a tag collection and sends a SQL query to be applied on tags from

186

thiscollection.Theusageof aspecificcollectionis actuallyafirst preselectionmade
by thephysicist.

2. Thequeryis processedon theserverside.
3. Only matchingtagsaresentback.Thisminimizesthenetworkload.
4. A secondselectk,nmaybeappliedon theclient side,for examplefor queriesthat

cannotbe formulatedin SQLandwhichrequireaprocedurallanguagesuchasC ++.

5. Once the selectio_ on tags is complete, request:_ for the corresponding data items are

sent to the data server.

6. Data items are retrieved (from files, in the LHCb experiment).

7. Retrieved data items are sent to the client.

8. A last selection may be performed on the full data items, in the case that some in-

formation was missing in the tags which did not allow to perform this more narrow

selection in a pre,,ious step.

Note that the separation between client and servers (a tag server and a data item server) on

Figure 2 allows for exanple to replicate the tag server while keeping the data item server

at a single location.

5 Performance evaluation

Let us evaluate the perf(,rmance of our indexing schema. It is hard to compare our proposed

schema to existing indexing techniques since we don't know of other indexing techniques

except linear scanning which are able to meet our requirements.

Two of the main high-dimensionality indexing schemas are X-trees[2] and VA-file[12].

The X-Tree method is outperformed by a sequential scan for a dimension exceeding 6 (see

[13]) and VA-files are only applicable to similarity-search queries. Thus, we only compare

our performances with 1he performances of the sequential scan method.

5.1 Some approximations

Let us make some simplifications and approximations in order to create a model of the

proposed indexing schema.

Type of data : We only consider one data type (integers). The cost of a comparison

between two values is lherefore always the same. This is not the case in real life, where

data typically consist o" numbers, booleans and strings. However, it is always possible to

express the comparison cost of a data item type as a factor of a single integer comparison.

Optimizations : No optimization of the query processing on tag collections are taken

into account. This me:ms that tag collections are searched sequentially. Thus, the gain

187

obtained by querying tag collections is really the minimum we can expect from the new

schema.

Data transfers : No optimization of data transfers are taken into account. Especially, we

do not consider pipelined schema where the data transfer of a given item could be realized

during the computation of the previous one.

Size of tag collections : For the performance analysis we consider only a single tag col-

lection with a fixed number of tags. The number of tags and the size of the tags may be

considered as an average among the different values of a real life example.

Complex queries : We do not take into account complex queries that could only be

processed by a dedicated program. In other words, step 4 of the selection process (Figure

2) does not occur here.

5.2 Theoretical model

Let us adopt the following notations :

Tl at

Ttr

Tto
TcPu

q

tseq

ltag

N is the number of items in the whole database;

n is the average number of items in a given tag collection;

D is the number of values in a data item i.e. its dimension;

d is the number of values in a tag i.e. the dimension of the tag; we assume that all these

values are tested;

d t is the number of values that are not contained in the tag but still need to be tested

(step 8 in Figure 2);

is the latency of the network which is used to transfer the data;

is the time used to transfer one value through the network; in second per value;

is the time needed to load one value from disk into the memory;

is the time to compute one value, i.e. to compare it with another value;

is the number of matching tags for the query we are dealing with;

is the duration of the query using a sequential scan;

is the duration of the query using the new indexing schema.

In the case of a sequential scan, the time needed to process a query is simply the time

needed for querying one data item multiplied by N. Each data item is read from disk,

transfered through the network and processed.

fseq = g (Tlat --]-O (Ttr -}- Tlo) -}- (d-q-dr) TCPU)

It is independent of the size of the result.

188

Thetime neededto processa queryusingthenewindexingschemais slightly morecom-
plicatedto compute.UsingthearchitecturedepictedinFigure2, wecandivide it into two
parts: thedurationtj of the query on tags and the duration t2 of the query on data items.

The query on tags is carried out on the server. Matching tags are transfered to the client.

The query on data item_, is similar to the sequential scan method.

ttag = tl + t2

t l = n (d TIo + d Tc Pu) + q (Ttat + d Ttr)

t2 = q (Tlat + D (TIo + Ttr) + d' Tcp U)

Finally:

tsel = UTzat + N D(Tto+ Ttr) + U (d + d') TCpU (1)

ttag = 2q 7'a, + (nd + q D) Tlo + q(d + D) Ttr + (nd + qd) Tceu (2)

The query duration is dependent on the number q of matching tags. Note that the assump-

tion that tags are transfered one by one to the client corresponds to the worst case. This

could be improved by sending tags by groups.

5.3 Interpretation

The terms in equations 1) and (2) can be divided into three parts : processing time (Tcpu),

network transfer time (T tat and Ttr) and data retrieval time (Tlo). Let us consider them

separately here.

Processing time : the processing time ratio between tag collection access and the default

sequential scan is •
nd + qd d + Td p

rcPu - - o_- (3)
N(d+d _) d+d _

n q
where ot = -- 7 = -

N n

Since 7 -< 1 (comes from q _< n), we can be sure that rcpu <_ oz. This demonstrates that the

CPU time ratio is less than (but of the order of) the ratio between the number of tags in a

collection and the number of data items.

Network transfer time : the network transfer time ratio between tag collection access

and the default sequent: al scan is •

2q Ttat +q(d + D) Ttr
FNET =

N Tlat + N D Ttr

q 2Tlat+(d+D) Ttr

g Tla t + O Ttr

189

Sinced _< D, we finally have •

rNET <_ 2 q
N

rueT _< 2C_y (4)

n q
where ot = -- T = -

N n

Since _,_< 1, the network transfer ratio is at least of the order of the ratio between the number

of tags in a collection and the number of data items. In practice, we even have], << 1 (we

foresee _,_ 10 -2 for LHCb) and thus ridle _ OL

Data retrieval time :

default sequential scan is •

the data retrieval time ratio between tag collection access and the

nd+qD
rDR -- ND -- oc (_ +y) (5)

n d q

where ot N _ D and Y = n

Usually, _ << 1 and y << 1. Thus rDR _ OL This means that, in respect to data retrieval time,

we gain far more than just the gain obtained by the preselection on data items.

Let us estimate y. By definition, y is the proportion of matching tags in a tag collection

for a given query. Let us consider a very simple case where every part of the query is a

comparison and is fulfilled by half of the items. In addition, let us suppose that the data is

uniformly distributed. This leads to :

1 rDR d 1

Y = _d and --or = --D+ --2d

Figure 3 gives the behavior of this ratio against the dimension d for different values of D.

Roughly, r__ goes down from 1 to a minimum for dimensions between 0 and dm _ 8 and

linearly goes up afterwards until it reaches 1 again for dimension D. Clearly, we can

approximate rDg by oca if d >_ din. This is exactly our goal since the data retrieval time

becomes proportional to the loading time of the tags.

For the LHCb experiment, the dimension of a data item is D _ 20000. The minimum I/O

time is reached ford _ 18 and rDR < 1ff30"

6 Conclusions

We presented a new way of indexing and selecting data in huge datasets having a high index

dimensionality. The method avoids linear scanning of the whole data set. Only a minimal

set of data is scanned, namely the values stored in tag collections. The selected tags point

to the data items that are then retrieved for applying a more narrow selection.

190

1-r_R

0.8

0.6
/

/

/

D bO

/

/

/

/

,/"

./

D 100

1-" /

0.4 _ /" _ /
/

-/ / D=300
0.2

k /

i0 20 30 40 50

tag

dimension

Figure 3: Evolution of a majoratio n of the data retrieval ratio divided by ot in function of

the dimension of the ta:g

By scanning tags in tag collections instead of a flat scan of all data items, the minimal gain

is proportional to the ratio between the number of dala items and the number of tags within

the selected tag collections. In many cases, the effective gain is the minimal gain multiplied

by the ratio of the dimension of data items and the dimension of tags.

The proposed data items selection and retrieval schema was implemented at CERN, in the

context of the LHCb e'_periment and seems very promising. No enhancements have been

tested at this time but aa implementation of a computer assisted parallelization is planned.

References

[i]

[21

[31

[41

C. C. Aggarwal and E S. Yu. The IGrid index: reversing the dimensionality curse

for similarity indexing in high dimensional space. In Proceedings of the sixth ACM

SIGKDD international conference on Knowledge discovery, and data mining, pages

119-129, August 2000.

S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: an index structure for high-

dimensional data. In VLDB'96, Proc. of 22 th International Conference on Veo" Large

Data Bases, page:; 28-39, 1996.

A. Guttman. R-t_ees • A dynamic indexing structure for spatial searching. In SIG-

MOD'84, pages 47-57, 1984.

H. V. Jagadish, N Koudas, and D. Srivastava. On effective multi-dimensional index-

ing for strings. In Proc. 2000 ACM SIGMOD on Management of data, pages 403-414,

May 2000.

191

15]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[131

N. Katayama and S. Satoh. The SR-tree: an index structure for high-dimensional

nearest neighbor queries. In Proceedings of the ACM SIGMOD international confer-

ence on Management of data, pages 369-380, May 1997.

B. S. N. Beckmann, H-E Kriegel R. Schneider. The R*-tree : An Efficient and Robust

Access Method for Points and Rectangles. In SIGMOD'90, pages 322-331, 1990.

Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The subspace coding method:

a new indexing scheme for high-dimensional data. In Proceedings of the ninth inter-

national conference on Information knowledge management CIKM 2000, November
2000.

K.-T. Song, H.-J. Nam, and J.-W. Chang. A cell-based index structure for similarity

search in high-dimensional feature spaces. In Proceedings of the 16th ACM SAC2001

symposium on on Applied computing, pages 264-268, March 2001.

C. web pages. A matter of symmetry. URL : http://lhcb-public.web.cern.ch/lhcb-

public/html/symmetry.htm.

C. web pages. Experiments in B-physics. URL : http://lhcb-public.web.cern.ch/lhcb-

public/html/bphysicsexpts.htm.

C. web pages. What is CP-violation? URL : http://lhcb-public.web.cern.ch/lhcb-

public/html/introduction.htm.

R. Weber and S. Blott. An approximation-based data structure for similarity search.

Technical Report 24, ESPRIT project HERMES (no. 9141), October 1997. Available

at http://www-dbs.ethz.ch/_weber/paper/HTR24.ps.

R. Weber, H.-J. Schek, and S. Blott. A Quantitative Analysis and Performance Study

for Similarity-Search Methods in High-Dimensional Spaces. In A. Gupta, O. Shmueli,

and J. Widom, editors, VLDB'98, Proc. of 24 th International Conference on Very

Large Data Bases, pages 194-205. Morgan Kaufmann, 1998.

192

Data Placement for Tertiary Storage

Jiangtao Li

Department of Computer Sciences

Purdue University

West Lafayette IN 47907 U.S.A.

jtli @ cs. ourdue.edu

Phone: + 1 765 494-6008

Fax: + 1 765 494-0739

Sunil Prabhakar

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907 U.S.A.

sunil @cs.purdue.edu

Phone: + 1 765 494-6008

Fax: + 1 765 494-0739

1 Abstract

In this paper we addres _ the important problem of data placement in tertiary storage taking

object relationships into account. This work is in contrast to earlier schemes that either

focus on specific data lypes or assume that data objects are accessed independently. Five

new data placement schemes are developed. The effectiveness of these schemes is shown

through simulation. The proposed schemes, in particular the Edge Merge scheme, give

superior performance cver schemes optimized for independent access.

We also show that our schemes can easily adapt to variations in the access pattern.

This also allows the schemes to be employed when no prior information about the access

pattern is available. Interestingly, our results show that the probabilities of object access

do not have a big impact on performance. On the other hand, changes to the clustering of

nodes have a significar t effect. This result underscores the importance of the relationships

between objects for placement of data. The use of controlled replication for "free" is also

developed and shown to be effective in further improving performance. The study also

evaluates the impact ot a secondary disk layer and prefetching.

2 Introduction

The tertiary storage layer in a hierarchical storage system is characterized by very large

data volume and very high random access latency. Both attributes are directly related to

the use of numerous cheap removable media sharing a small number of expensive drives

and robot mechanisms. The high access latency is typically dominated by media switch

time (for certain tape systems, however, the seek time may exceed the media switch time).

With ever increasing demands for storing very large volumes of data for applications such

as telemedicine, online multimedia document systems, and other large multimedia repos-

itories, large amounts of live data are being stored on tertiary storage systems. Random

193

accesses to data stored on tertiary storage can suffer unacceptable delays as media are

swapped on drives. The need for swapping media is dictated by the placement of data.

Judicious placement of data on tertiary storage media is therefore critical, and can signifi-

cantly affect the overall performance of the storage system.

The placement of data for specific domains such as multi-dimensional arrays [1], re-

lational databases [15], and satellite images [21] has been addressed earlier. Research on

tertiary storage placement in a more general setting has been addressed under the assump-

tion that the data objects are accessed independently [2]. This assumption is rarely valid in

practice - data objects typically are related and this is reflected in the access of the data.

For example, online manuals contain hyperlinks to related sections and other manuals, a

browsing session in a multimedia repository is typically guided by similarity between ob-

jects, and various test results of a given patient are likely to be accessed during diagnosis

or treatment. In this paper we address the problem of placement of data on tertiary storage

in a general setting without the assumption of independent access. Our approach is to ex-

ploit the nature of the access to the data to determine an optimal placement. This work is

orthogonal to related issues of data migration and scheduling. The problem of placement

of data on tertiary storage can be broken down into two sub-problems due to the significant

cost of switching media: i) allocation of data to media; and ii) placement of data within the

assigned medium. The problem of placing data within media has received some attention

and we employ existing solutions to this problem such as [2]. The focus of our study is on

the sub-problem of allocating data to media in order to minimize switching.

We propose and evaluate several placement schemes for tertiary storage systems based

upon data access patterns. The schemes can be employed even if the access pattern is

not known a priori, and can dynamically adapt to changes in access patterns. The study

considers the impact of the secondary storage buffer and caching policy on the placement,

and effective use of prefetching based upon the placement and access pattern. In an earlier

study we demonstrated that for the case of multimedia documents replication of objects

is an effective technique for reducing switching and improving performance. We study

the use of replication of objects on multiple media for the general case in this study. The

effectiveness of the proposed schemes is evaluated using a detailed hierarchical storage

simulator. Our results show that significant improvements (as much as 80% reduction in

average waiting time) can be achieved with our placement schemes. The remainder of the

paper discusses the issues involved, our proposed approaches, and sample experimental

results. Further details and results will be given in the full version of the paper.

3 Related Work

The placement of data for specific domains such as multi-dimensional arrays [1], relational

databases [15], and satellite images [21] has been addressed earlier. Research on tertiary

storage placement in a more general setting has been addressed under the assumption that

the data objects are accessed independently. Placement schemes based upon independent

194

documentaccessprobabilitiesandno replicationhavebeenproposedin [2, 18]. Optimal
arrangementof cartrid_:esandfile-partitioningschemesfor carousel-typesystemsarein-
vestigatedin [17]. Pla_:ementschemesfor dataon opticaldisksaredevelopedin [3]. To
thebestof ourknowled;e,ourwork is thefirst to addresstheissuesof placementof related
objects(in ageneralselting)andreplication.

Otherresearchershaveaddressedtheuseof hierarchicalstoragesystemsfor multimedia
data.A cachereplacementtechniquefor managingsecondarystoragebufferswhenmulti-
mediaobjectsarestore] on tertiarystoragehasbeendevelopedby Ghandeharizadehet al
[6]. The useof a pipel]ningmechanismthat avoidsthe needfor completematerialization
of anobjectondiskbe:oreinitializing playbackis presentedin [5]. Wehavedevelopeda
prefix-cachingscheme¢¢ith low jitter and startup latency for storing continuous media data

[14]. Storing video on hierarchical storage has also been studied in [20, 19]. The study

addresses I/O bandwid h issues at the various levels of the storage hierarchy. Scheduling

schemes for tertiary storage libraries are discussed in [4, 13, 8, 1 i] - any of these tech-

niques can be applied in conjunction with our research to further improve performance. In

[10] a prefetching algo,_ithm based upon Markov-chain prediction of access is developed.

Models of tape systems and tertiary storage system parameters can be found in [7, 9].

4 Data Placement Schemes

In this section we first explain the nature of access for related objects. This is followed

by a description of th_ proposed tertiary placement schemes that take into account the

relationships between cbjects. Then we discuss the issues of adaptive placement, impact of

secondary storage, replication and prefetching.

4.1 Access Pattern fiw Related Objects

For efficient storage and retrieval of data it is critical to take into account the data access

pattern. Data objects c_ n be accessed either directly, or through a link from another object.

Independent, or direct access to an object can be captured simply by the probability of ac-

cess. In addition to direct access to objects, users may access objects based upon links from

other objects (e.g HTML pages with links to other pages, or hyperlinks between manual

pages). Such access is also very common in a browsing scenario whereby users simply fol-

low links of interest. A user would typically begin by accessing an object and then possibly

following some number of interesting links. If none of the links are interesting, the user

may directly access so_ ne other object.

A Browsing Graph (BG) can be used to capture such access patterns. The browsing

graph consists of labeled nodes and labeled edges. Each node represents an object and

the label of the node gives the probability that the node will be accessed independently of

the previous visited no]e. A directed edge between two nodes represents a link from one

object to the other and lhe edge label gives the probability that the edge would be followed.

195

The sum of the probability of all edges going out of an object is not necessarily 1.0, since

it is possible that none of the edges will be followed. We use the term birth probability to

represent the probability of independent access to objects and death probability to represent

the probability that once the node is accessed, none of its edges will be followed. The death

probability of a node is simply 1 - (sum of outgoing edge probabilities).

4.2 Data Placement Schemes

Tertiary storage suffer from high access latency. The access cost in tertiary storage is

dominated by the media exchange operation and head position delay. The goal of data

placement is to minimize the expected access cost and reduce latency. In [2] it is shown

that a placement whereby the objects are placed sequentially in decreasing order of their

access probabilities is optimal. We call this the Birth Probability Scheme. This result,

however, is based upon the assumption that the objects are accessed independently.

Static Probability Scheme: The frequency of an object being accessed is usually dif-

ferent from its birth probability. The object birth probability is the probability of the object

being accessed directly, while the static probability is the probability of being accessed di-

rectly or indirectly. In other words, static probability represents the frequency of the object

being requested. Given the user browsing graph, the static probability of an object can be

easily computed by simulation. Our static probability data placement scheme is that the

objects are placed sequentially in decreasing order of their static probabilities.

Edge Merge Scheme: This scheme explicitly takes into account the links between ob-

jects. Once an object is requested, it is very likely that objects with high probability links

from this object will be accessed next. If such neighbors are placed on the same medium,

a medium exchange can be avoided. The main idea of this scheme is therefore to place

strongly related objects on the same medium. Ideally, all related objects are placed on the

same medium. However, the medium capacity will not allow this. Therefore related objects

may have to be spread across multiple media if the "cluster" of related objects is large. On

the other hand, if there are small "clusters" then the problem is to pack as many clusters as

possible on a single medium.

The basic idea behind edge merge is the following: Not all linked objects can be placed

together; therefore, we give priority to higher probability links. To achieve this, we start

merging objects that are linked by high probability edges into a new object. We define the

new object's birth probability to be equal to the sum of that of the merged objects. Links

into and out of the merged objects connect to the new object. Objects are merged in de-

creasing order of the link probabilities. Merging is not done if the the cumulative size of the

resultant object will be larger than the medium capacity. When no further objects can be

merged, the cumulative objects are allocated to media. This allocation follows the optimal

scheme of [2] in decreasing order of the cumulative static probability.

Note that when two objects are merged, the cumulative birth probability is simply the

196

sumof thebirth probal_ilitiesof theobjects.Similarly, theprobabilityfor incomingedges
from thesameobjectale merged.Foroutgoingedges,aweightedsumof theprobabilities
is usedif bothmergin_objectshaveedgesto the sameobject. Thesummingis doneac-
cordingto thestaticprobabilityof themergingobjects.Theresultingstaticprobabilityof
themergedobjectsare,:omputedin amannersimilar to thatexplainedearlierfor theStatic
Probabilityscheme.

Hot Edge Merge S,zheme: This scheme is very similar to the Edge Merge scheme. The

only difference is that only edges that have a probability greater than a preset value (i.e. the

"hot" edges) are merged. The idea is that this scheme will result in media with very high

probability of access waich will remain loaded most of the time.

Birth Hop Scheme: This scheme presents an alternative technique for combining

direct and indirect access patterns. As in the hot edge merge scheme, we hope to use

both object access probability and browsing graph information. The birth hop scheme

works as follows. We begin by assigning the object with the highest birth probability to a

blank medium. Following this step, we place as many objects as possible onto the same

medium in decreasing order of either edge probability (from objects already allocated to

the medium) or birth probability. Once the medium i._ full, we assign the object, from those

that are unallocated, with the highest birth probability to a new medium and repeat the pro-

cess. This operation is -epeated until all objects are allocated.

Static Hop Scheme: This scheme is similar to birth hop scheme, except static prob-

ability instead of birth probability. The idea of this scheme is to allocate an object to a

medium, we can either choose an object with highest static probability, or we can choose

an object that has high probability edges with objects already on that medium.

4.3 Adaptive Placement

A key component of lhe proposed data placement schemes is knowledge of the access

pattern. Although it is useful to know this a priori, it is not critical to the success of the

proposed approach. St ch information can easily be gathered from the system by keeping

track of object requests. Based upon the observed access pattern, the data placement on

tertiary storage can be tuned. In Section 5 we show the effectiveness of this adaptive

placement in response to changes in the access pattern. In the complete absence of access

information, the placer_ent can begin with an initial guess for the access patterns followed

by progressive refinem, mt as user requests are serviced and the actual pattern is discovered.

4.4 Impact of Secondary Storage

In hierarchical storage systems, the secondary storage disks typically serve as a cache for

data on tertiary storag,_. Depending upon the size of the disk layer and the caching (or

migration) policy, som_ of the requests for objects are serviced directly from disk without

impacting tertiary storage. The effect of the disk cache can be translated into a change in

197

theeffectiveaccesspatternobservedatthetertiary level. An adaptivestrategyfor tertiary
storagecanexploit this changein accesspatternto generatea placementbettersuitedfor
theavailablesecondarystoragecache.

4.5 Replication

Data objects that have strong links to objects in different media are likely to cause excessive

swapping of media. While such situations will hopefully not arise often, it is possible that

an object may have strong links to objects in different clusters. These two clusters may

be placed on separate media due to their size. To overcome this, we propose to selectively

replicate objects on multiple media based upon their edge probabilities to objects in various

media. Furthermore, for schemes that place related collections of objects, it is possible that

there are segments of media that not filled - these can be used to replicate objects for "free"

since the extra space is not large enough for a cluster and would otherwise be empty.

4.6 Prefetching

Schemes that place collections of related objects together aim to avoid swapping of media

for a sequence of requests from a user. It is possible, however, that in order to service

the requests of other users, the media may be swapped. This could result in thrashing

between the users and expensive swapping. To avoid this situation we investigate the use of

prefetching of related objects from a medium before ejecting a loaded medium. Prefetching

further delays pending requests and also uses up disk space. It is therefore important to

make a good judgment about when and how much to prefetch.

5 Experimental Results

In this section we demonstrate the effectiveness of our new data placement schemes to-

wards reducing average response time. The results are based upon a detailed CSIM [16]

simulation model of the system. The tape library is modeled on the Ampex DST tape li-

brary configured with Ampex DST 310 drives [9]. Further details of the tape simulator can

be found in [12]. The Secondary storage is configured with four 5GB disks, totaling 20

GB of disk storage. The tertiary storage component is modeled on a robotic tape library

with four Ampex DST drives. Some of the important parameters for the tape simulation are

provided in Table 1. The experiments were conducted on a synthetic collection of 10,000

objects of size 100 Megabytes each. The tape library is configured with 2000 tapes each of

size 2GB, giving a total of 4TB of tertiary storage.

The set of objects and the access pattern is generated as follows. The birth probability of

objects follows a Zipf distribution. In order to capture the effects of links between objects,

we introduce the notion of edges between objects. To determine the edges, the objects are

divided into clusters. The number of objects in a cluster is uniformly distributed between

5 and 20. Some (5%) of the objects are considered to be outliers that do not belong to any

cluster. For each object, a death probabili_, Pa, is picked uniformly distributed between

198

Parameter Value(s) Meaning

TAPE SIMULATION PARAMETERS

RWD_OVI-ID

SEEK_OV H D

SEEK_SPEED

EJECT_TI VIE

LOAD_TIldE

PICK_TIME

PUT_TIME

MOVE_TIVIE

XFER_SP[',ED

NUM_TAt'ES

TAPE_C_P

NUM_DRIVES

0.0006 seconds

0.0006 seconds

! 10 MB/s

4 seconds

10.1 seconds

3.7 second

1 second

1.9 second

14.2 MB/s

2000

2 GB

4

Rewind Overhead

Seconds

Tape seek rate

Time to eject a tape

Time to load a tape on a drive

Time for robot to grab a tape

Time for robot to drop a tape

Time for robot to move

Tape transfer speed

Total number of tapes

Tape cartridge capacity

Number of Drives

DISK SIMULATION

ROT_S PE ED 4002

SEC_Tt', 72

CYLINDERS 1962

TR_CYI_ 19

TRKSKEW 8

CYSKEW 18

CNTRL_T ME 1.2

CAPACF'Y 5 GB

PARAMETERS

Rotational speed RPM

No. of sectors per track

No. of cylinders

No. of tracks per cylinder

Track skew in sectors

Cylinder skew in sectors

Controller overhead (ms)

Disk storage capacity

Table 1: Table of Parameters

0.05 and 0.2. This is the probability that the user doe,; not follow any of the links from this

object. Edges to other objects within the cluster are created and assigned probabilities that

are uniformly distributed so as to add to 1 - Pal.

It is important to n¢,te that although the access pattern is an input to the placement al-

gorithm, it is not crucial that this pattern be accurate. As mentioned earlier, if the access

pattern is unknown or changes after the placement, the system can adapt by reorganizing

the data according to file new observed access pattern. Experimental evidence to support

this claim is presented in Subsection 5.2.

In each experiment, we run a stream of requests. The stream begin by requesting a

starting object identified using the birth probability for that object. As soon as this object

is retrieved, the user chooses to either follow one of the edges from this object, or to pick

another object independently. This choice is based upon the edge probabilities and the

death probability of the currently accessed object. In each test, we run 1000 requests based

upon which we compule the average response time.

199

30;

25.

_ 2o
g
m

< 15

Birth
Static - _-

.... Edge Merge

_ _ _ Static + Hop

i i

2 3

Number ol Ddves

Figure 1: Average Response Time for Different Data Placement Schemes

5.1 Different Data Placement Schemes and Performance

We begin by studying the relative behavior of the different schemes in reducing average re-

sponse time. Figure 1 shows the average response time by different schemes. The number

of drives was varied from 1 to 4. As can be seen from the graph, the Edge Merge scheme

gives the best performance, and the Birth scheme has the worst performance. The Static

scheme has less average response time than Birth scheme. The Edge Merge scheme re-

duces the average access time by 77% compared to the Static scheme for a single drive. We

can also observe that as the number of drives increases, the average response time reduces

for all schemes. The superior performance of Edge Merge was observed in all our experi-

ments. The scheme that does not consider the relationships between objects (Birth) has the

poorest performance. Similarly, the Static scheme has poor performance since it does not

use the link information effectively.

5.2 Adapting to Variations in Access Pattern

In the preceding experiment it was assumed that the access pattern is known a priori. This

information is used to generate the placements. If the access pattern is unknown or changes

after the placement, the placement may be less beneficial. The actual access pattern can

easily be discovered by recording the requests for objects. Based upon this input, a more

effective placement can be achieved. Note that through observation, it is not possible to

distinguish between direct and indirect access to an object. When object j is requested fol-

lowing a request for object i, it is not clear whether or not j was accessed due to a link from

i to j. Consequently, the schemes based upon birth probability would not be applicable.

We now investigate the impact of these variations.

In Figures 2 (a) and (b) we study the impact of random changes in the object access

probabilities and the edge probabilities respectively. In each experiment the placement is

200

5O

Ongnr_l S_c + Hop Pleceme_l _-

50

45

4O

_ 2o

10

5

0

Ortglr_l SIBtlC placem_l
Modrf_d Sta_c + Hop Placemenl

Slat_c Place_nl

45

40

5-

0'--

C_gqnal Edge Merge Pk_cement -_
Original Stale ÷ I_ P_c_en_

Ong_al Stale P_._men_
Modff_d Static + HO_ P_mcement

Modbf_ed Stale P_cemen_

L_.--

5 10 15 20 25 30 35 4O 45 50 0 5 10 15 20 25 3_ 35 4_) 45 50

Pencentag_ c_ge in eK _e r,fobab_t_*_s Percentage chage _n noOe proba_es

(a) (b)

Figure 2: Impact of Changes in (a) Edge; and (b) Node probabilities

generated based upon an initial access pattern. Next, a random subset of 10% of the nodes

(edges) are chosen and their probabilities are altered to varying degrees. The performance

is tested using this altere d access pattern. The frequency of access to documents based upon

this altered graph is cap ured and a new placement is made based only upon these observed

frequencies (with no otler knowledge of the changed access pattern). Using this adapted

placement, the performance is again measured. This is repeated for varying degrees of

changes from the original access pattern. From the graphs we observe that changes in edge

and node probabilities have very little impact on the data placement schemes. These ex-

periments show the impact of changes in the distribution of the node and edge probabilities

while keeping the structure of the access pattern fixed. In other words, the results showed

that if we know the groups of objects that are related, exact knowledge of the probabilities

is not critical.

5O

45

40

_5O

20

®

10

5

0

Odgir,al Edge Merge Placement

Or_cjinal Static + Hop Placement
Original Stahc Placement

Modifk_d Edge Merge Placement

Modifi_*d Static + HOP Placement a

Modified Static Placement

jjJ _ _ _ --
j_J-

/
X

j -J

5 10 15

Pencentagechagein node's cluster

2O

Figure 3: Impact of Changes in Node's cluster

In this experiment w e study the impact of poor knowledge (or lack of knowledge) about

201

thegroupingof relatedobjects.In Figures3westudytheimpactof limitedrandomchanges
in theobjectclustercomposition.Theplacementis generatedbaseduponaninitial access
pattern. Next, a randomsubsetof 5%, 10%,etc of thenodesarechosenandthenode's
clustermembershipis changed.The performanceis testedusingthis alteredaccesspat-
tern. Wealsomeasuretheperformanceof anadaptedplacementbasedupontheobserved
accesspattern. As canbeseenin the graph,changesto clustercompositionresult in an
increasein theaverageresponsetimefor bothplacementschemes.However,we seethat
after adaptingto the newpattern,we areableto reducethe responsetime. The response
timeis reducedsharplyin Edge Merge scheme, it drop to same level as no change to the

access pattern. We can also notice that even without adapting to the new placement, the

Edge Merge scheme still performs better than Static scheme.

From these three graphs we see an interesting result: information about the clustering or

grouping of related objects is more critical than exact information about the probabilities of

access. This is good news since these relationships are generally easy to discover statically

based upon the application semantics (e.g. urls in a given web page). The results also

underscore the importance of not making the assumption of independent access.

5.3 Impact of Secondary Storage

25

15

-x_

x

Modif'_od Static Placement'

Modified Edge Merge Placement tt

Original Static Placement

Original Edge Merge Placement

i h i J _ i I i i

2 4 6 8 10 12 14 16 18

Size of Secondary Storage (GB)

2O

Figure 4: Impact of Secondary Storage

In this experiment, we study the impact of the size of the disk buffer. In hierarchical

storage system, the secondary storage disks typically serves as a cache for data on tertiary

storage. User requests for data cached in the buffer are served without any access to tertiary

storage. If the requested object is not in the disk cache, the object is copied from tertiary

storage to buffer, then from the buffer to the user. A buffer replacement policy is used to

create space when the buffer becomes full. In our experiments, we use the popular Least

Recently Used (LRU) cache replacement policy.

202

Figure 4 presents the performance for the various schemes for different buffer sizes.

The buffer size is varied from 400MB upto 20GB. We can observe from the graph that as

the size of the buffer ircreases, the average response time decreases for all schemes. We

also observe that the presence of a disk cache does not change the relative performance of

the Edge Merge scheme and the Static scheme.

Since we have secordary storage as cache. The effect of the disk cache can be translated

into a change in the eft;tctive access pattern observed at the tertiary level. The hot objects

(objects with high statk probability) may not be hot at the tertiary level since these objects

may always be cached on disk. In order to account for this change in the access pattern,

we can adapt the placer_ent based upon the observed access pattern at the tape level as was

done in Section 5.2. In, Figures 4, we study our new data placement based on observed

access pattern. As we "an seen from the graph, the new adapted data placement slightly

better than original datz placement.

5.4 Impact of Replication

In our original model, each object only has one copy in tertiary storage. To replicate ob-

jects on tertiary storage, there are two approaches. 3-he first approach is to replicate some

frequently requested obiects. We can use this approach with the Birth and ,static schemes.

However, disk caching will reduce the effectiveness of this approach because most of hot

objects will reside in c_che. The second approach is to replicate related objects when free

space is available on a medium. This approach works for Edge Merge scheme and Hot

Edge Merge scheme. _n our experiment, we mainly study the Edge Merge scheme with

the second approach dte to its superior performance. Unused segments on a medium are

filled using the followfi_g rules. First objects that have strong connections with objects al-

ready in the medium a_e replicated. If space still remains after considering such objects,

hot objects are replicat¢_'d. The results of the experiment are shown in Figure 5. It can be

seen that the free data replication results in a noticeable improvement in performance.

5.5 Prefetching Issms

As stated in the last section, prefetching related objecls can be beneficial. The disadvantage

is that prefetching delays pending requests further and uses up disk space. In this subsec-

tion, we study the imp,tct of prefetching for the proposed schemes. In order to see the

impact of the amount of prefetching performed, we tested our six schemes with different

prefetching sizes. In this experiment prefetching is performed whenever possible. When

a new tape is loaded onto the drive, any object not in the disk cache may be prefetched.

The total amount o1" data prefetched from a single medium is varied from 0 to 300 MB.

The results of the experiment are shown in Figure 6. As can be seen, most schemes benefit

from prefetching when the prefetch size is 100 MB. For larger sizes, only the Edge Merge

scheme benefits - the average response time is reduced by 13%. This is explained by the

fact that the Edge Merge scheme is based on the relationship between objects. When one

object is retrieved, the most connected objects are likely to be in the same medium, so

203

7.9 i

7.8

_ 7.7

_ 7k6

_ 75

7.4

7_3

7.2

Ed e Me e Placement without Replication _-
_dge _erge Placement with Replication ,_

k_

i i

2 3

Number of Dnves

Figure 5: Impact of Replication on Edge Merge Scheme

30

"G

25

g

15

10

Birth
Static

Edge Merge
Hot Edge Merge

Birth + Hop
Static ÷ Hop

-_ ___ _=_ __---_---"t _-_-_

z i

t 00 200 300

Size of Preletching (MEI)

Figure 6: Impact of Prefetching on Different Schemes

prefetching is beneficial. Prefetching is not good for the Birth Scheme because under this

scheme related objects are scattered in different media. In fact the penalty of prefetching

larger than 100MB of data is higher than the benefit.

Next we study the choice of when to prefetch with the Edge Merge scheme in order

to make prefetching most effective. In the last experiment we prefetched blindly. In this

experiment, we prefetch only if there is a suitable object. There are two kinds of candidates

for prefetching when a medium is loaded for retrieving object Oi: i) objects with strong

links from O_; and ii) objects with a large static probability. The experiment is controlled by

two parameters: a minimum edge probability (say minep) and a minimum static probability

(say min,p). If an object in same medium has edge probability greater than mi_2ep or static

probability greater than min_p, that object will be a prefetching candidate. Since we cannot

204

prefetch all candidates the amount of data prefetched is limited. The results are shown in

Figure 7. Only Edge Merge is studied, with several prefetching policies. We study 4

policies: i) minep = 0.5, miZ_sp = 0.005, this is most restrictive policy; ii) 7lzilZep = 0.3,

¢r_iZ_sp--- 0.0003, preference is given to high static probability objects; iii) 'mh_ep = 0.05,

min_p = 0.005, preferer ce is for high edge probability objects; and iv) rt_ilZep = 0.05, miz_sp

= 0.0003, this is the most liberal policy. As we can observed from graph the most liberal

policy gives better performance than the most strict policy. The two schemes that have a

low threshold for the ec ge probability give better performance for small prefetch sizes, but

their performance degr,des for larger prefetch sizes.

tl 4

112

11

E: 108

a, 106

o.

i_ 104

_, 102

10

98

96

\

rnir ed_Je 05, min static 0.005

rain ,_dge 03, min static 00003

rain edge 005, rnin static 0.005

min edge 0.05, min static 00003

m
N

i J

100 200 300

Maximum Size of Prefetching MS)

Figure 7: Impact of Different Prefetching Policies on Edge Merge Scheme

6 Conclusion

In this paper we addres _ the important problem of data placement in tertiary storage taking

object relationships into account. We also study the advantage of limited replication in this

setting. This work is ir contrast to earlier schemes that either focus on specific data types

or assume that data obj _cts are independently accessed. To the best of our knowledge, this

is the first study to expbre these issues. We propose live new data placement schemes. The

effectiveness of these szhemes in reducing average response time is shown through exten-

sive experimentation u,.ing a detailed simulator. We find the Edge Merge scheme has best

performance. The perfi)rmance of placement schemes that are known to be optimal under

the assumption of independent access is not as good as that of the proposed schemes.

We also show that our schemes can easily adapt to variations in the access pattern. In

fact this allows the schemes to be employed when no prior information about the access

pattern is available, qhe schemes progressively adapt to give good performance as the

access pattern is learned. Capturing the access pattern is easily achieved at the tertiary

storage level. In all cases, adjusting the placement to the new observed pattern resulted in

205

significantly improved performance. Interestingly, our results show that the probabilities

of access (node and edge) do not have a big impact on our Edge Merge scheme. Changes

to the clustering of nodes, on the other hand, has a greater effect. This goes to show the

importance of the inter-relationships between objects. The use of controlled replication for

"free" is also developed and shown to be effective in improving performance further. The

impact of disk caching is easily handled in a manner similar to that of variation in access

patterns. The effective access pattern at the tertiary layer is measured and used to place the

data, rather than the overall access pattern. The techniques are coupled with prefetching

which is found to be beneficial for the Edge Merge scheme.

Overall, we see that the proposed techniques are very effective in placing data on ter-

tiary storage. The techniques perform much better than schemes that are optimal under the

assumption of independent access. In our experiments the Edge Merge scheme achieved as

much as 77% reduction in average access time over the state-of-the-art scheme (Static).

Acknowledgment This work was supported by the National Science Foundation under

CAREER grant IIS-9985019, and Research Infrastructure Grant 9988339-CCR.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

L. T. Chen, R. Drach, M. Keating, S. Louise, D. Rotem, and A. Shoshani. Efficient

organization and access of multi-dimensional datasets on tertiary storage systems. In

Information Systems, volume 20, pages 155-83. Elsevier Science, 1995.

S. Christodoulakis, E Triantafillou, and E Zioga. Principles of optimally placing data

in tertiary storage libraries. In VLDB'97, Proc. of Intl. Conf. on Veo' Large Data

Bases, 1997, Athens, Greece, pages 236-245, 1997.

D. A. Ford and S. Christodoulakis. Optimizing random reterievals from clv format

optical disks. In Proceedings of the Int. Conf. on Ve_ Large Data Bases, pages 413-

22, Barcelona, Spain, September 1991.

C. Georgiadis, E Triantafillou, and C. Faloutsos. Scheduling and performance of

robotic tape libraries in video server environments. Technical report, Multimedia

Systems Institute of Crete (MUSIC), Tech. Univ. of Crete, Crete, Greece, 1997.

S. Ghandeharizadeh, A. Dashti, and C. Shahabi. Pipelining mechanism to minimize

the latency time in hierarchical multimedia storage managers. Computer Communi-

cations, 18:170-184, march 1995.

S. Ghandeharizadeh and C. Shahabi. On multimedia repositories, personal computers,

and hierarchical storage systems. In Proc. of ACM Int. Conf. on Multimedia, 1994.

B. K. Hillyer and A. Silberschatz. On the modeling and performance characteristics

of a serpentine tape. In SIGMETRICS, pages 170-9, Canada, 1996.

206

[81

191

[10]

[11]

[12]

[13]

[141

[15]

[16]

[17]

[18]

[191

[201

[21]

B. K. Hillyer and a,. Silberschatz. Random I/O scheduling in online tertiary storage.

In Proc. ACM SIGMOD hzt. Conf on Management of Data, Canada, 1996.

T. Johnson and E. L. Miller. Performance measurements of tertiary storage devices.

In Proc. of 24rd h_tl. Conf on Ver3.,Large Data Bases, pages 50-61, New York, 1998.

A. Kraiss and G. Weikum. Vertical data migration in large near-line document

archives based on markov-chain predictions. In Proceedings of 23rd International

Conference on Ve; V Large Data Bases, pages 246-255, Athens, Greece, August 1997.

S. More, S. Mutht krishnan, and E. Shriver. Efficiently sequencing tape resident jobs.

In Proc. ACM Syn,p. on Princ4ples of Database Systems, 1999.

S. Prabhakar. An)verview of current tertiary storage technology and research. Mas-

ter's thesis, Unive "sity of California, Santa Barbara, 1998.

S. Prabhakar, D. Agrawal, A. El Abbadi, and A. Singh. Scheduling tertiary I/O in

database applicati 3ns. In Proc. of the 8th hzternational Workshop on Database and

Expert Systems A I,plications, pages 722-727, Toulouse, France, September 1997.

S. Prabhakar and R. Chari. Minimizing latency and jitter for large scale multimedia

repositories throu:,,,h prefix caching. Technical Report CSD 01-018, Department of

Computer Science s, Purdue Univeristy, September 2001.

S. Sarawagi. Database systems for efficient access to tertiary memory. In Proc. ofl4th

1EEE Symp. on M :lss Storage Systems, pages 120-6, Monterey, California, 1995.

H. D. Schwetman CSIM: AC-based, process-oriented simulation language. In Pro-

ceedings of the 19 _6 Winter Simulation Conference, pages 387-396, December 1986.

S. Sesbadri, D. R_tem, and A. Segev. Optimal arrangements of cartridges in carousel

type mass storage systems. The Computer Journal, 37(10):873-887, 1994.

R Triantafillou, S Christodoulakis, and C. Georgiadis. Optimal data placement on

disks: A comprehensive solution for different technologies. Technical report, Multi-

media Systems In ;titute of Crete (MUSIC), Tech. Univ. of Crete, Greece, 1996.

R Triantafillou and T. Papadakis. On-demand data elevation in hierarchical multi-

media storage servers. In Proc. of 23rd hltl. Conf on Ver)' Large Data Bases, pages

226-235, Athens, Greece, August 1997.

R Triantafillou and T. Papadakis. Exploiting tertiary storage for performance improve-

ment in video-on-demand servers. Technical report, Multimedia Systems Institute of

Crete (MUSIC), Iechnical University of Crete, Crete, Greece, 1998.

J. Yu and D. DeWitt. Processing satellite images on tertiary storage: A study of the

impact of tile size, on performance. In 5th NASA Goddard Conf on Mass Storage

Systems and Teclmologies, pages 460-476, College Park, Maryland, Sept. 1996.

207

Storage Resource Managers:

Mitldleware Components for Grid Storage

Arie Shoshani, Alex Sim, Junmin Gu

Lawrence Berkeley National Laboratory

Berkeley, California 94720

{shoshani, asim, jgu} @lbl.gov
tel: + 1-510-486-5171

fax: + 1-510-486-4004

Abstract

The amount of scientific data generated by simulations or collected from large scale

experiments have reached levels that cannot be stored in the researcher's workstation or

even in his/her local computer center. Such data are vital to large scientific

collaborations dispersed over wide-area networks. In the past, the concept of a Grid

infrastructure [1] mainly emphasized the computational aspect of supporting large

distributed computatioaal tasks, and managing the sharing of the nem,ork bandwidth by

using bandwidth resep,ation techniques. In this paper we discuss the concept of Storage

Resource Managers (S RMs) as components that complement this with the support for the

storage management of large distributed datasets. The access to data is becoming the
main bottleneck in sach "data intensive" applications because the data cannot be

replicated in all sites. SRMs are designed to dynamically optimize the use of storage

resources to help unclcg this bottleneck.

1. Introduction

The term "storage resource" refers to any storage system that can be shared by multiple
clients. We use the term "client" here to refer to a user or a software program that runs on

behalf of a user. Storage Resource Managers (SRMs) are middleware software modules

whose purpose is to m mage in a dynamic fashion what resides on the storage resource at

any one time. SRMs do not perform file movement operations, but rather interact with

operating systems, miss storage systems (MSSs) to perform file archiving and file

staging, and invoke middleware components (such as GridFTP) to perform file transfer

operations. There are several types of SRMs: Disk Resource Managers (DRMs), Tape

Resource Managers (IRMs), and Hierarchical Resource Managers (HRMs). We explain

each next. Unlike a storage system that allocates space to users in a static fashion (i.e. an

administrator's interference is necessary to change the allocation), SRMs are designed to

allocate and reuse space dynamically. This is essential for the dynamic nature of shared

resources on a grid.

A Disk Resource Manager (DRM) manages dynamically a single shared disk cache. This

disk cache can be a single disk, a collection of disks, or a RAID system. The disk cache

is available to the clier_t through the operating system that provides a file system view of

209

thediskcache,with theusualcapabilityto createanddeletedirectories/files,andto open,
read,write, andclosefiles. However,spaceis not pre-allocatedto clients. Rather,the
amountof spaceallocatedto each client is manageddynamically by the DRM. The
function of a DRM is to managethedisk cacheusingsomeclient resourcemanagement
policy thatcanbesetby the administratorof thedisk cache.Thepolicy mayrestrictthe
numberof simultaneousrequestsby eachclient, or maygivepreferentialaccessto clients
basedon their assignedpriority. In addition,aDRM mayperformoperationsto get files
from otherSRMson thegrid. This capabilitywill becomeclearlaterwhenwedescribe
how DRMs areusedin a datagrid. Using a DRM by multiple clients canprovidean
addedadvantageof file sharingamongthe clients and repeateduseof files. This is
especiallyuseful for scientific communitiesthat are likely to have an overlappingfile
accesspatterns. One can usecachemanagementpolicies that minimize repeatedfile
transfersto thedisk cachefor remotegrid sites. The cachemanagementpoliciescanbe
basedonusehistoryor anticipatedrequests.

A TapeResourceManager(TRM) is a middlewarelayer that interfacesto systemsthat
managerobotic tapes. The tapesareaccessibleto a client throughfairly sophisticated
Mass StorageSystems(MSSs) such as HPSS,Unitree, Enstore,etc. Such systems
usuallyhavea disk cachethat is usedto stagefiles temporarilybeforetransferringthem
to clients. MSSs typically provide a client with a file systemview and a directory
structure,but do not allow dynamicopen,read,write, andclose of files. Insteadthey
providesomeway to transferfiles to the client's space,usingtransferprotocolssuchas
FTP,andvariousvariantsof FTP(e.g.ParallelFTP,calledPFTP,in HPSS). TheTRM's
function is to acceptrequestsfor file transfersfrom clients, queuesuchrequestsin case
the MSS is busy or temporarily down, and apply a policy on the use of the MSS
resources.As in thecaseof a DRM, thepolicy mayrestrictthenumberof simultaneous
transferrequestsby eachclient, or may give preferentialaccessto clientsbasedon their
assignedpriority.

A HierarchicalStorageManager(HRM) is a TRM that hasa stagingdisk cachefor its
use. Thus, it can be viewed as a combination of a DRM and a TRM. It can use the disk

cache for pre-staging files for clients, and for sharing files between clients. This

functionality can be very useful in a data grid, since a request from a client may be for

many files. Even if the client can only process one file at a time, the HRM can use its

cache to pre-stage the next files. Furthermore, the transfer of large files on a shared wide

area network may be sufficiently slow, that while a file is being transferred, another can

be staged from tape. Because robotic tape systems are mechanical in nature, they have a

latency of mounting a tape and seeking to the location of a file. Pre-staging can help

mask this latency. Similar to the file sharing on a DRM, the staging disk in an HRM can

be used for file sharing. The goal is to minimize staging files from the robotic tape

system. The HRM design is based on experience in a previous project reported in [2].

The concept of an SRM can be generalized to the management of multiple storage

resources at a site. In such cases, the site SRM may use "site-file-names" (directory path

210

+ file names)which dc not reflect the physicallocationandfile names. This gives the
site the flexibility to move files aroundfrom one storagedeviceto anotherwithout the
site-file-nameschanging. Whena client accessesa file usinga site-file-name,it may be
given in responsethe physical location and file name. The client can then use the
physicalfile nameto executea file transfer.

In general,it is bestif 5;RMsaresharedby a communityof usersthatare likely to access
thesamefiles. Theycanbedesignedto monitorfile accesshistoryandmaximizesharing
of files by keepingthemostpopularfiles in thediskcachelonger.

2. The role of SRMs ir_ a Data Grid

Suppose that a client nns an analysis program at some site and wishes to get data stored

in files located in various sites on the grid. First. the client must have some way of

determining which file,, it needs to access. Checking a file catalog, using some index, or

using a database systerl containing information about the files can accomplish this step.

We refer to this step _.s "request interpretation". The information used in this step is

often referred to as a ' metadata catalog". The result of this step is a set of logical file

names that need to be accessed. The second step is lo find out for each logical file where

it physically resides or replicated. Note that a single logical file can be replicated in

multiple sites. Files can be either pre-replicated in multiple sites based on expected use

by a system administlator or replicated dynamically because they were accessed by

clients at these sites, h_ a grid environment, the information on the locations of replicated

files exists in a "replica catalog", a catalog that maps a single logical file name to

multiple site-specific files. The site-specific file name includes the name a machine and

possibly port at the site. the directory path on that system, and the file name.

In many grid environments today, the burden for the above work is being thrust on the

clients. Therefore, it i_ now recognized that such tasks can be delegated to middleware

components to provide these services. A "request manager" is the term used to refer to

such services. The req rest manager performs "request planning" based on some strategy,

and then a "request e_ecution" of the plan. This terminology is used by several grid

projects, notably PPDG [3], GriPhyN [4], and ESG [5]. There are three options to

consider for request planning: either move the client's program to the site that has the

file, move the file to tile client's site, or move both the program and the data to another

site for processing. A,ll three possibilities are _alid, and much of the middleware

development addresses this issue. In all these cases, SRMs play an important role. In the

case that the program moves to the site where the file exists, it is necessary to "pin" the

file in that site; that it, to request that the file remains in that site, so that when the

program is executed the file is found in the cache. When the program completes, the file
can be "released". In the case that the file needs to be transferred from a source site to

target site (either to thv client's site, or to another site), it is necessary to "pin" the file in

the source site, to reserve the space in the target site, and maintain this state till the

transfer to the target site is complete. Then the "pin" can be released. Here, the SRM at

211

thesourcesitehastherole of managingthe"pinning", andthe SRMat thetargetsitehas
therole of allocatingspace(i.e. makingspaceby removingother files if necessary),and
reserving the spacetill the transfercompletes. SRMsneedto deal also with various
failures,sothatspacereservationsdonotpersistforever,and"pins" donotpersistin case
that a "release"is not performed. Theconceptof"pinning a file" is centralto SRMsand
will bediscussedfurther laterin this document.

In a recentpaper[6], the authorsdescribe5 layersneededto supportgrid applications:
fabric, connectivity, resource,collective, and application layers. The purpose of this

layered approach is that services in each layer can rely on services in layers below it. The

fabric layer consists of computational resources, storage resources, network resources,

catalogs, code repositories, etc. The connectivity layer consists of communication,

authentication, delegation, etc. The resource layer consists of components (and

protocols) for managing various resources: computing, storage, network, catalog, inquiry,

etc. We see SRMs as belonging to the "resource layer". The collective layer consists of

services such as replica catalog, replica selection, request planning, and request

execution. Request management is a generic term that uses any of the services in that

layer, as well as services below it. The application layer consists of application specific

services. The "request interpretation" we mentioned above belongs to this layer, since

finding which logical files are needed by an application is specific to that application.

3. A practical use case: an analysis scenario

We describe below an analysis scenario where the computation is performed at the

client's site, and the needed files are in other sites on the grid. This is a common special

case of grid resource usage in many scientific communities. The schematic diagram of

this analysis scenario is shown in Figure 1.

As shown in Figure 1, at the client's site there may be multiple clients sharing a local disk

cache. Each of the clients issues a logical request, typically consisting of a logical

predicate condition for what they wish to analyze. A typical example of such a request in

the high-energy physics domain (where atomic particles are accelerated and made to

collide at high speeds) might be: "find all the collisions (called "events") that have an

energy more that 50 GEV, and produced at least 1000 particles". A similar request for

climate model analysis may be "get all temperatures and wind velocity for summer

months in the Pacific Ocean region for the last ten years". These requests may be

produced by a graphical user interface or composed by the client using some query

language. The Request Interpreter is a component that accepts the logical query and

produces a set of logical file names that contain the desired data. A Request Planner may

check with a Replica Catalog and other network services such as the "network weather

service" (which provides an estimate of current network availability) to determine the

replica site from which to get each file. The Request Executer then executes this plan.

An example of a request executer, called DAGMAN (for Directed-Acyclic-Graph

Manager) was recently developed by the Condor project [7].

212

The requestexecutercould communicate with various SRMs on the grid, requesting

space allocation and fie pinning, and making requests for file transfers. However, we

have decided to delegat_ the task of making requests for file transfers to the SRMs.

client []i(a client

query

Client's site

I Request]Interpreter

logical files

[fiilteessr_eqCie_s Request 1site-fiPe_ific

Executor

__ tr_a_ns_ e_rrequests ____,__._

HP, M ..,

request

planning

I

["" ,@

!
DRM

network

Figure 1. A schematic diagram of an analysis scenario

Specifically, if a request for a set of files is made to an SRM, it is its responsibility to

dynamically allocate space for the files, to negotiale with remote SRMs the pinning of
files at the remote site, to invoke file transfer services to get the files from other sites and

to release the files after they are used. By making this fundamental design choice, we not

only simplify the request executer's task, but also permit clients to communicate directly

with SRMs making m Jlti-file requests. The ability for clients to request files directly

from an SRM was a _asic requirement that guided our design since, in general, one

cannot assume the existence of request managers. Furthermore, clients should be able to

make direct requests to SRMs if they so choose. A secondary advantage of this design

213

choice is that it facilitatesfile sharingby the SRMs. Sinceclients canmakemulti-file
requeststo theSRM, it canchooseto servefiles to clientsin theorderthatmaximizesfile
sharing,thusminimizing repeatedfile transfersoverthenetwork.

For theanalysisscenarioshownin Figure 1,whereall the files haveto bebroughtto the
localdisk cache,therequestexecutermakesits file requeststo the local DRM. Thelocal
DRM checksif thefile is alreadyin its cache. If it is in thecache,it pins thefile. If it is
not, it communicateswith otherSRMsto getthefiles.

Wehaveimplementedseveralversionsof DRMs aswell asanHRM thatinterfacesto the
HPSSmassstoragesystem.The HRM is implementedasa combinationof a TRM that
dealswith reading/writingfiles from/to HPSS,and a DRM for managingits disk cache.
Both the DRM andthe TRM arecapableof queuingrequestswhenthe storagesystems
theyinterfaceto arebusy. For example,aTRM interfacingwith HPSSmaybe limited to
performonly afew stagingrequestconcurrently,but it maybeaskedto stagehundredsof
files. Theserequestsarethenqueued,andperformedasfastasHPSSwill perform.The
SRMsusegrid-enabledsecurefile transferservicesprovidedby the Globusproject [8],
calledGridFTP.These DRM and HRM components are in the process of being used by

one of the experiments of the Particle Physics Data Grid (PPDG) [3], and the Earth

Science Grid (ESG) [5] to perform grid file replication functions. The HRM was also

used in a demo for SuperComputing 2000 as part of an infrastructure to get files from

multiple locations for an Earth Science Grid application (ESG). This was described in a

recent paper [9]. We are now evaluating several "cache replacement policies" to be used

by DRMs, by both conducting simulations and setting up real testbeds.

4. The implementation of the analysis scenario

The analysis scenario described in Figure 1 was implemented as part of a demo during

the Supercomputing 2001 conference. The application used in the demo was high-energy

physics (HEP). Figure 2 shows the actual setup of the demo. From a client's point of

view the system accepts a logical query request, and takes care of all the details of

figuring out what files should be transferred, and where to get them from. The client can

observe in a graphical display the progress of file transfers over time. Figure 3 shows

the progress of transfer of each file managed by the client's DRM. Partially filled bars

represent transfer in progress. When a file that arrives is processed and released by the

client, it may be removed automatically by the DRM if it needs to make space for
additional files.

In order to illustrate the usefulness of SRMs, we describe next in some detail the steps of

processing a logical query in a grid environment. In figure 2, the Bit-Map index is a

specialized index used as the "request interpreter", which was developed as part of

another project [10]. It gets as input a logical request made of logical conditions over

range predicates. An example of such a request in this HEP application is to find all files

that contain collisions (or "events") for which the following condition holds:

214

((0.1 < AVpT < 0.2)/' (10 < Np < 20)) v (N > 6000).

where AvpT is the "average momentum", Np is "the number of pions" produced in this

collision, and N is the 'total number of particles produced in this collision". The result of

the Bit-Map index is a :;et of logical file names, such as:

{star.simui.00.1 i. 16.tre cks. i 56 star.simul.00.11.16.tracks.978 },

Control path

Chicago Livermore Berkeley

Figure 2. A sztup for processing logical analysis requests over the grid

where "star" is the narle of the experiment at Brookhaven National Laboratory, "simul"

means simulation data "00.1 !.16" is the date the data was generated, "tracks" refers to

the type of data in the]le, and the number is the file ID. This set of logical file names is

given to the next comp _nent, the Request Manager.

The Request Manager which consists of both a Request Planning and Request Execution

components) is a conlponent that chooses the site where to get each file, and then

oversees the executior of the request. Given that a file may be replicated in multiple

locations, it chooses the most appropriate location. Each file is assigned a "site file

name" in the form ofa URL, such as:

gsiftp://dg0n 1.mcs.anl. gov/homes/sim/gsiftp/star.simul.00.11.16.tracks. 156,

where "gsiftp" is the protocol for transferring the file, "dg0nl.mcs.ani.gov" is the

machine name, "home_'/sirrfgsiftp" is the directory path, and

215

"star.simul.00.11.16.tracks. 156" is the file name.

Similarly, if the site that has the file is managed by an SRM, the protocol used will say

"hrm" or "drm". For example, for accessing the same file out of an HPSS tape system,
the URL used is:

hrm://dm.lbl.gov:4000/home/drn/srm/data 1/star.simul.00.11.16.tracks. 156,

where "dm.lbl.gov:4000" is the name of the machine that has HRM running on it, and the

port used by HRM, "home/dm/srm/datal" is the directory on the HPSS system where the
file resides, and "star.simul.00.11.16.tracks. 156" is the file name.

Note that files can reside on systems that may or may not have an SRM managing the

storage system. We set up the demo to illustrate that an SRM can work with systems

managed by other SRMs, or systems that have some grid middleware (such as GridFTP),

or even systems that have no middleware software at all (using only FTP to transfer

files). In the demo, we set up four types of nodes: one with a DRM managing the storage

system (at LBNL), one with an HRM managing access to an HPSS system (at NERSC-

LBNL), one that has no SRM but has GridFTP available on it (at ANL), and one that has

only FTP available on it (at LLNL).

216

RequeM /D abcdefgh- 1234

II

Figure 3. Display of the dynamic progress of file transfers

Once the Request Manager has assembled the set of URLs for the files needed, it invokes

the local DRM (at the Supercomputing Conference floor at Denver). The local DRM

then checks for each fil,_ if it is already in cache, and if the file is not found it contacts the

site that has it, requesting pinning of files, and invoking the appropriate file transfer

service (GridFYP or FI P in this demo). Once a file is transferred, it sends a "release of

file" notice to the sourc,. • site.

The SRMs are multi-threaded components that can support simultaneous file transfer

requests from multiple _:lients. Thus, given a requesl for multiple files, the client's DRM

will initiate the coordination of space reservation, pinning of files, and multiple file

transfer requests to multiple sites. The number of such concurrent processing of file

transfer requests is a poicy decision. Since multiple clients may share a local DRM, the

217

DRM may havea policy to restrictthe amountof spaceandthe numberof files that a
client canholdsimultaneously.

The display of file transfersin Figure3 wasdesignedto showdynamicprogress. The
local diskcacheis checkedevery10seconds(aparameterizedchoice)for thesizeof files
being transferred,and the display is updated. The horizontal bar below file progress
display shows the total bytes transferredas a fraction of the total bytes requested.
Moving the curseroverany of the file barsprovidesinformationof the sourcelocation,
size,andtransferrate. This is shownin thelowersectionof thedisplay. Finally, thereis
a "messagesection"at thebottomto inform theclient of eventsastheyoccur, including
failuresto accessfilesandthereasonsfor that,suchas"systemdown".

The abovescenariowas limited to caseswhereall the files are moved to the client's
location. Thegeneralizationof this scenariois that therequestplannergeneratesa plan
wherethe executionof the analysiscanbepartitionedto run on multiple sites(perhaps
the siteswherethe dataresideto minimize file transfertraffic). In this generalscenario,
bothdataandprogramscanmoveto thelocationsbestsuitedto executea requestin the
mostefficientmannerpossible. Thegeneralscenarioalsoincludesmovingtheresultsof
computationsto the client, aswell asstoringresultsin storagesystemsand archiveson
the grid. Thus,in general,SRMscanbe invokedat multiple locationsby a singleclient
to satisfytherequestplan.

5. Advantages of using SRMs

As can be deduced from the discussion above, the main advantage of an SRM is that it

provides smooth synchronization between shared resources by pinning files, releasing

files, and allocating space dynamically on an "as-needed" basis. A reasonable question is

why use SRMs if it is possible to use GridFTP and FTP directly as was done in the above

demo. We recall that SRMs perform two main functions: dynamic space allocation and

dynamic file pinning. Indeed, if space is pre-allocated, and the files are "permanently"

locked in the source site there is no need for SRMs. However, in a grid environment

where resources need to be reused dynamically, SRMs are essential. SRMs perform the

management of quotas, the queuing of requests when resources are tight or if the clients

exceed their quota, the freeing of space of files allocated but not released by clients

(similar to "garbage collection"), and providing the management of buffers for pre-

staging from mass storage systems. Pre-staging and buffering are important because the

network bandwidth available to a client may vary in an unpredictable fashion.

A second advantage of using SRMs is that they can eliminate unnecessary burden from

the client. First, if the storage system is busy, SRMs can queue requests, rather than

refuse a request. Instead of the client trying over and over again, till the request is

accepted, an SRM can queue the request, and provide the client with a time estimate

based on the length of the queue. This is especially useful when the latency is large such

218

as for reading a file from tape. If the wait is too long, the client can choose to access the

file from another site. or wait for its turn. Similarly, a shared disk resource can be

temporarily full, waiting for clients to finish processing files, and therefore queuing

requests is a better alternative than simply refusing the request.

A third advantage to the clients is that SRMs can insulate them from storage systems

failures. This is an important capability that is especially useful for HRMs since MSSs

are complex systems that fail from time to time, and may become temporarily

unavailable. For long lasting jobs accessing many files, which are typical of scientific

applications, it is prohibitive to abort and restart a job. Typically, the burden of dealing

with an MSS's temporary failure falls on the client. Instead, an HRM can insulate clients

from such failures, by nonitoring the transfer to the HRM's disk, and ifa failure occurs,

the HRM can wait fo" the MSS to recover, and re-stage the file. All that the client

perceives is a slower l esponse. Experience with this capability was shown to be quite

useful in real situations [2].

A fourth advantage is taat SRMs can transparently deal with network failures. SRMs can

monitor file transfers, md if failures occur, re-try the request. They can provide clients

the information of sucl- failures, so that clients can find other alternatives, such as getting

the file from its original archive ifa transfer from a replication site failed. Recently, there

is an interest of manag ng the inherent unreliability of the network as part of an extended

middleware file transfec service, called "Reliable File Transfer" (RFT). It is intended as a

service layer on top of GridFTP that will try to re-transfer files in case of temporary

failures of the network, will queue such requests, and will provide status of the requests.

When such services ar_ available, SRMs can take advantage of them. Otherwise, as is

the case for systems that have no grid middleware software (e.g. only FTP), SRMs need

to protect the clients from unreliable network behavior.

A fifth advantage of S[',Ms is that they can enhance the efficiency of the grid, eliminating

unnecessary file transfers by sharing files. As mentioned above, it is typical of scientific

investigations that multiple clients at the same site use overlapping sets of files. This

presents an opportunity for the SRM at that site to choose to keep the most popular files

in its disk cache longer, and providing clients with files that are already in the disk cache

first. Managing this behavior is referred to as a "replacement policy", that is deciding

dynamically which file to replace when space is needed. This problem is akin to

"caching algorithms", which have been studied extensively in computer systems and web

caching. However, unlike caching from disk to main memory, the replacement cost in

the grid can be quite high, as files have to be replaced from remote locations and/or from

tertiary storage. Deploying efficient replacement policies by the SRMs can lead to

significant reductions i_ repeated file transfers over 1he grid.

Finally, one of the mo..;t important advantages of using SRMs is that they can provide a

"streaming model" to the client. That is, they provide a stream of files to the client

programs, rather than all the files at once. This is especially important for large

219

computing tasks, such as processing hundreds, or even thousands of files. Typically, the

client does not have the space for the hundreds of files to be brought in at once. When

making such a request from an SRM, the SRM can provide the client with a few files at a

time, streaming of files as they are used and released. This is managed by the SRM

enforcing a quota per client, either by the amount of space allocated and/or by the number

of files allocated. As soon as files are used by the client and released, the SRM brings in

the next files for processing in a streaming fashion. The advantage to this "streaming

model" is that clients can set up a long running task, and have the SRM manage the

streaming of files, the pre-staging of files, the dynamic allocation of space, and the

transferring of files in the most efficient way possible.

6. "Pinning" and "two-phase pinning"

The concept of pinning is similar to locking. However, while locking is associated with

the content of a file to coordinate reading and writing, pinning is associated with the

location of the file to insure that a file stays in that location. Unlike a lock, which has to

be released, a "pin" is temporary, in that it has a time-out period associated with it, and

the "pin" is automatically released at the end of that time-out period. The action of

"pinning a file" results in a "soft guarantee" that the file will stay in a disk cache for a

pre-specified length of time. The length of the "pinning time" is a policy determined by

the disk cache manager. Pinning provides a way to share files that are not permanently

assigned to a location, such as replicated files. This permits the dynamic management

and coordination of shared disk caches on the grid. Since we cannot count on pins to be

released, we use the pinning time-out as a way to avoid pinning of files forever.

Two-phase pinning is akin to the well known "two-phase locking" technique used

extensively in database systems. While two-phase locking is used very successfully to

synchronize writing of files and to avoid deadlocks, two-phase pinning is especially

useful to synchronize requests for multiple files concurrently; that is, if the client needs

several files at the same time, it can first attempt to incrementally pin these files, and only

then execute the transfers for all files, then releasing them as soon as each is transferred.

We note, that even if file replicas are read-only, a deadlock (or pin-lock) as a result of

pinned files can occur if we allow requests for multiple files concurrently. However, if

we assume that file requests are asynchronous and that time-outs to release files are

enforced, pin-locks are eventually resolved because pinned files are released after they

time-out. Nevertheless, two-phase pinning is a useful technique to avoid system

thrashing by repeatedly pinning and pre-emptying pins. It requires coordination between
the SRMs.

7. The design of "Read" and "Write" functionality of SRMs

When a request to read a file is made to an SRM, the SRM may already have the file in

its cache. In this case it pins the file and returns the location of the file in its cache. The

client can then read the file directly from the disk cache (if it has access permission), or

22O

cancopyor transferth,: file into its local disk. In eithercase,theSRM will beexpected
to pin the file in cachefor theclient for a periodof time. A well-behavedclient will be
expectedto "release"thefile whenit isdonewith it. Thiscaseappliesto bothDRMs and
HRMs.

If thefile is not in the(tiskcache,the SRMwill beexpectedto get thefile from its source
location. For a DRM this meansgetting the file front someremotelocation. For an
HRM, this meansgettiagthefile from theMSS. This capability simplifies the tasks that

the client has to perforTn. Rather than return to the client with "file not found", the SRM

provides the service of getting the file from its source location. Since getting a file from

a remote location or a tape system may take a relatively long time, it should be possible

for the client to make a non-blocking request. To accommodate this possibility the SRMs

provide a callback fun(tion that notifies the client when a requested file arrives in its disk
cache and the location of that file. In case that the client cannot be called back, SRMs

also provide a "status' function call that the client can use to find out when the file

arrives. The status function can return estimates on the file arrival time if the file has not

arrived yet.

HRMs can also maintain a queue for scheduling the file staging from tape to disk by the

MSS. This is especially needed if the MSS is temporarily busy. When a request to stage

a file is made, the HRM checks its queue. If the HRM's queue is empty, it schedules its

staging immediately. 7"he HRM can take advantage of its queue to stage files in an order

optimized for the MSS. In particular, it can schedule the order of file staging according

to the tape ID to minimize tape mounts and dismounts, as described in [2]. Like a DRM,

the HRM needs to notify the client that the file was staged by issuing a callback, or the

client can find that out by using "status".

A request to "write" a file requires a different functionality. In the case ofa DRM, if the

file size is provided, then that space is allocated, and the client can write the file to it. If

the file size is not provided, a large default size is assumed, and the available space is

adjusted after the file i'_;written. In the case of an HRM, the file is first written to its disk

cache in exactly the s_,me way as the DRM description above. The HRM then notifies

the client that the file has arrived to its disk using a callback, then it schedules it to be

archived to tape by the MSS. After the file is archived by the MSS, the SRM notifies the

client again using a callback. Thus, the HRM's disk cache is serving as a temporary

buffer for files being u ritten to tape. The advantage of this functionality by HRM is that

writing a file to a remote MSS can be performed in two stages: first transferring the file

to the HRMs disk cache as fast as the network permits, and then archiving the file to tape

as a background task. In this way the HRM can eliminate the burden from the client to

deal with a busy MSS as well as dealing with temporary failures of the MSS system.

One of the practical implementation problems that SRMs have to deal with is an incorrect

or missing file size. In both cases of getting or putting a file into the SRM space, the

SRM needs to allocate space before the transfer of the file into its disk cache. If the file

221

size provided (or assigned by default) is smaller than the actual file size, then this can

cause various failures, such as writing over other files, or overflowing the total space that

the SRM manages. There are various methods of dealing with this problem (such as

interrupting the transfer or permitting incremental growth of the allocated space), but all

require the dynamic monitoring of the file transfers, and the ability to terminate the

transfer process if necessary. Since SRMs cannot terminate the transfer process initiated

by the client (in the case that it puts a file into the SRM's disk cache), this problem

presents a special challenge. The solution to this problem usually requires modifications

to the file transfer server program.

SRMs can also be used to coordinate a third party file movement. Essentially, an SRM in

site Y can be asked to "pull" a file form site X. This request can be made by a client in a

third location. The SRMs in the two sites X and Y then coordinate space allocation, file

pinning, and file release. The actual transfer of the file is a regular two-way file transfer

from X to Y. The usefulness of this functionality is for clients that produce files, store

then temporarily in some location X, and then request their movement to an archive in

site Y. The inverse functionality can also be provided, where the SRM at site X is asked

to "push" the file to site Y.

8. Conclusion

We discussed in this paper the concept of Storage Resource Managers (SRMs), and

argued that they have an important role in streamlining grid functionality and making it

possible for storage resources to be managed dynamically. While static management of

resources is possible, it requires continuous human intervention to determine where and

when file replicas should reside. SRMs make it possible to manage the grid storage

resources based on the actual access patterns. In addition, SRMs can be used to impose

local policies as to who can use the resources and how to allocated the resources to the

grid clients. We also introduced the concept of "pinning" as the mechanism of requesting

that files stay in the storage resource until a file transfer or a computation takes place.

Pinning allows the operation of the coordinated transfer of multiple files to be performed

as a "2-phase pinning" process: pin the files, transfer, and release pins. We have

developed several versions of prototype SRMs and used them in test cases as part of the

Particle Physics Data Grid (PPDG) and Earth Science Data Grid (ESG) projects. A

prototype of an HRM was also developed at Fermi National Accelerator Laboratory

which interfaces to their Enstore MSS. In addition, efforts are now underway to

coordinate the SRM functionality across several projects, including the development of

an HRM at Thomas Jefferson National Accelerator Facility to interface to their JASMine

MSS, and the European Data Grid to interface to their CASTOR MSS. The emerging

concepts and interfaces seem to nicely complement other grid middleware services being

developed by various grid projects, such as providing efficient and reliable file transfer,

replica catalogs, and allocation of compute resources.

222

Acknowledgements

We would like to thanks our colleagues John Wu, and Vijaya Natarajan, who provided

the bit-map index and :he monitoring tool display program for the SC 2001 demo. We

also acknowledge the Jseful interactions with people involved in the PPDG and ESG

projects, as well as the European Data Grid project. This work was supported by the

Office of Energy Research, Office of Computational and Technology Research, Division

of Mathematical, Infornation, and Computational 5;ciences, of the U.S. Department of

Energy under Contract _o. DE-AC03-76SF00098.

References

[1] The Grid: Blueprint for a New Computing Infrastructure, Edited by lan Foster and

Carl Kesselman, Morgan Kaufmann Publishers, July 1998.

[2] Access Coordinatioa of Tertiary Storage for High Energy Physics Application, L. M.

Bernardo, A. Shoshani, A. Sire, H. Nordberg (MSS 2000).

[3] Particle Physics Dala Grid (PPDG), http://www.ppdg.net/

[4] The Grid Physics N ztwork (GriPhyN) http://www.griphyn.org

[5] Earth Science Grid _ESG), http://www.earthsystemgrid.org

[6] Ian Foster, Carl Kesselman, Steven Tuecke, 1he Anatomy of the Grid: Enabling

Scalable Virtual Organization, The International Journal of High Performance

Computing Application _, 15(3), (2001) 200-222.

[7] DAGMAN, part of he Condor project,

http://www.cs.wisc.edu/condor/manual/v6.2/2 101nterjob_Dependencies.html

[8] The Globus Project, http://www.globus.org

[9] B. Allcock, A. CheJwenak, E. Deelman, R. Drach, I. Foster, C. Kessehnan, J. Lee, V.

Nefedova, A. Sim, A. Shoshani, D. Williams, H_gh-Performance Remote Access to

Climate Simulation Dala: A Challenge Problem for Data Grid Technologies, Proceedings

of Supercomputing Cor, ference (2001).

[10] A. Shoshani, I,. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim,

Multidimensional lndedng and Query Coordination for Tertiary Storage Management,

Statistical and Scientific: Database Management Conference (1999) 214-225.

223

Storage Area Networks and the High Performance Storage System

Harry Hu|en and Otis Graf
IBM Global Services

1810 Space Park Drive
Houston TX 77058

tlulen: +1-281-488-2473, hulen@us.ibm.com

Graf: + 1-281-335-406 I, ofgraf@us.ibm.com

Keith Fitzgerald and Richard W. Watson

Lawrence Livennore National Laboratory
7000 East Ave.

Livermore CA 94550-9234

Fitzgerald: + 1-925-422-6616, kfitz@llnl.gov

Watson: + 1-925-422-9216, dwatson@llnl.gov

Abstract

The High Performance Storage System (HPSS) is a mature Hierarchical Storage

Management (HSM) system that was developed around a network-centered architecture,

with client access to storage provided through third-party controls. Because of this

design, HPSS is able lo leverage today's Storage Area Network (SAN) infrastructures to

provide cost effective, large-scale storage systems and high performance global file

access for clients. Key attributes of SAN file systems are found in HPSS today, and more

complete SAN file system capabilities are being added. This paper traces the HPSS

storage network architecture from the original implementation using HIPPI and IPI-3

technology, through ioday's local area network ILAN) capabilities, and to SAN file

system capabilities now in development. At each stage, HPSS capabilities are compared

with capabilities gene'ally accepted today as characteristic of storage area networks and

SAN file systems.

1. Introduction

Storage Area Networ_ (SAN) technology has a bright future as measured by its growing

market acceptance. Web information source allSAN.com [10] reports that:

Within the mainframe arena, SANs already represent upwards of 25% of data

center traffic. Outside of the mainframe area, SANs are expected to account for

25% &external disk storage and approximately 50% of multi-user tape storage by
2003

We believe that SAN technology will only reach its full potential when it can be used to

provide secure sharirg of data between heterogeneous client systems. To realize this

potential requires appropriate storage system software and hardware architectures. One

use for such a capability is a SAN-based global file system. A generic host-based file

225

systemprovidescapabilitiessuchas a namingmechanism,data locationmanagement,
andaccesscontrol.A global file systemextendsthis capabilityto multiple independent
operating systems by using specialized protocols, locking mechanisms,security
mechanisms,and serversto provide deviceaccess.A SAN-basedglobal file systemis
distinguishedfrom otherglobal file systemsby the characteristicthat client computers
accessstoragedevicesdirectly,without movingdatathrougha storageserver.

The High PerformanceStorageSystem design and implementationare focusedon
hierarchicaland archival storageservicesand thereforeare not intendedfor useas a
general-purposefile system.HPSSis neverthelessa file system,andspecifically,aglobal
file system.While any client applications(suchas a physics code) canaccessHPSS
deviceswith normalUnix-like calls to theHPSSclient API library, in normal operation

these applications are data transfer applications that transfer data between HPSS files and

the local file system. HPSS has a network-centered architecture that separates data

movement and control functions and offers a secure, global file space with characteristics
normally associated with both LAN-based and SAN-based architectures.

Figure l illustrates a typical deployment of HPSS. Note in particular the separation of

control and data transfer networks (which may be physical or logical). This inherent

separation of control and data helps enable HPSS to present a secure, scalable, global file

system image to its users and leads naturally to full global SAN file system capabilities in

the near future. The terms "Mover" and "Core Server" in Figure 1 are fairly descriptive

of their function, but they are more fully described in Section 5.

This paper tracks the development of concepts and implementation for the separation of

control and data functions in storage systems and the importance of these concepts for

SAN file systems. These concepts are rooted in work that began over two decades ago [9]

and prototyped a decade ago in the National Storage Laboratory (NSL) [3]. Lessons

learned at the NSL led to the architecture of the High Performance Storage System

(HPSS), which today supports a variety of high-speed data networks [4, 5]. HPSS is a

collaborative development whose primary partners are IBM and the U.S. Department of

Energy. This collaboration has been in existence for a decade, and HPSS development is

ongoing. We discuss simple extensions to HPSS to exploit today's SAN technology

within large-scale HSM storage systems. We conclude with a section on lessons learned.

2. SAN Terminology

Several definitions of a Storage Area Network exist as related to common, shared

repositories of data. The Storage Networking Industry Association (SNIA) online

dictionary offers the following definition of Storage Area Network [1]:

. A network whose primary purpose is the transfer of data between computer

systems and storage elements and among storage elements. Abbreviated SAN.

SAN consists of a communication infrastructure, which provides physical

connections, and a management layer, which organizes the connections, storage

elements, and computer systems so that data transfer is secure and robust. The

226

.

term SAN is ust ally (but not necessarily) identified with block I/O services rather

than file access _;ervices.

A storage systc_m consisting of storage elements, storage devices, computer

systems, and/or appliances, plus all control software, communicating over a

network.

HPSS Clients
External Control Network

1 I I
I

I

I

' / Jl_ll
Supercomputer SMP Computer Workstation /" Cluster

\ / _ HPSS
\ \ / _ Core

_ / / Server

/ a_d'Netw-orks) {,, dedicated to data ' I Meiadata _ _

_ /. transfers...... _ "_ I
Internal Control Network I

Disk &

Tape

I /
[oooooooooo<_ooo Iooooooooo_
o o ==lm

HPSS Mover

__ SCSI

Figure 1 ."HPSS storage systems support a network centered architecture

Our interest is in large, high performance storage systems where 100s - 1000s of

terabytes of data can b_; shared among client computers. The focus of SANs in our paper

is from Bancroft et al [2]"

The implementation [of a SAN] permits true data and/or file sharing among

heterogeneous _ lient computers. This differentiates [SAN file systems] from SAN

systems that pe-mit merely physical device sharing with data partitioned (zoned)

into separate file systems The software orchestrating the architecture is what

unites the components and determines exactly how these elements behave as a

system.

227

The same paper defines the notion of a SAN file system. Figure 2 illustrates the control

and data flow of a such a generic SAN file system.

The optimum vision is a single file system managing and granting access to data

in the shared storage with high bandwidth Fibre Channel links [today there are

other network technologies] facilitating transfers to and from storage The

objective ... is to eliminate file servers between clients and storage with minimum

or no impact to the controlling applications. Control information is typically

separated from data traffic and in some architectures the two are isolated on

completely separate networks.

Separately, i
/ another SAN r

Step 1. Client ! client can access I
requests read !the same file
access to file. wth assurance Ste 2 Access

/-- i that sharing is I I P '..
;- //'_" _rly and safe _---, Irequ_#c_n d/,' -. , g
' -'-//"..................... ; _--- ,)_,_t=,t=t=i_
I / // I I /

: e Control Network I / // , I ,/,_ passed to
e o?' I / / ; !/J/ .requesting

_, " I I /'/ I _' i client.
, SAN Clients I U , ,
' I / : : Metadata

0 0 Controller

V : and Global
Namespace

L

RAID RAID

Shared RAID

Figure 2: A file read operation illustrates the separation of data and

control in a typical SAN file system.

It will be shown in the following sections that HPSS current implementation incorporates

significant components of the SAN file system functionality described in the above

definition, and how additional SAN file system functionality will be added to HPSS.

228

3. SAN Precursors

Although the term "SAN" is relatively new, the basic ideas of shared file systems have

been around since the early days of computing. Papers by Thornton [8] and Watson [9]

trace shared file concepts to the Octopus network at Lawrence Livermore National

Laboratory in the 1960_'+, the Network Systems Corporation Hyperchannel, and the IEEE

Mass Storage Reference Model in the late 1970s and early 1980s.

The foundation for HPSS can be traced to 1992 and the National Storage Laboratory

(NSL). The NSL was a joint government/industry collaboration investigating high

performance storage sy..;tem architectures and concepts [3]. Work at the National Storage

Lab led to NSL-Unitree, a prototype hierarchical storage system incorporating a

distributed storage architecture that leveraged third-party data transfers almost a decade

in advance of today's _3AN deployments. A third-party data transfer is a data transfer

controlled by an agent. The agent controls the data transfer by communicating with both

the data source and the data sink in setting up the transfer. The agent does not participate

in the actual movement of the data.

MAXSTRAT Corporat on, a partner in the National Storage Lab, built high-end HIPPI-

based RAID devices known as Gen4 and Gen5 arrays. These disk arrays were among the

highest performing RAID disk devices of their day. Using the IPI-3 protocol, NSL-

Unitree was able to a,-hieve data rates of about 60 MB/s between a Cray C90 and

MAXSTRAT disks over a HIPPI network.

IPI-3 was the third release of the Intelligent Peripheral Interface, a standards-based I/O

interface that at the tim.: was considered to be a high-end alternative to SCSI. Like SCSI,

IPI-3 could exist as a nttive physical level protocol, or it could be encapsulated and sent

over another general-purpose protocol such as HIPPI framing protocol. Disks were

available equipped with a native IPI interface. Both IPI and TCP/IP could coexist on a

HIPPI network through the use of HIPPI framing protocol.

The MAXSTRAT disk array was connected to a high performance computer via parallel

or serial HIPPI, which has a nominal data rate of 100 megabytes per second. Originally

designed as a point-to-point parallel interface, HIPPI evolved to be a switchable serial

interface using a fibre transmission medium. Through the use of HIPPI switches, the

Gen5 could be connected to multiple computers By using encapsulated IPI, each

computer could communicate with any Gen5 disk array as though it were a local IPI-3

device. Today this would be analogous to sharing a Fibre Channel disk array using SCSI

over Fibre Channel, or more recently Gigabit Ethernct with SCS1 over IP.

Significantly, the Gen4 and Gen5 implemented the third-party capabilities of the IPI-3

standard. With this capability, IPI-3 commands could be sent to a central server that

mediated the requests and redirected them to source and sink for third-party transfer to

bring order and preset're data integrity. The following description of the third-party

architecture from Chris Wood [6]:

229

Third-party transfer architectures address the data "ownership" and access control

issues by consolidating all data ownership and file system knowledge in a

centralized server. Unlike NFS-style architectures, third-party transfer allows for

direct disk I/0 access to the central data store by clients. This architecture

eliminates the burden of heavy inter-host lock manager and semaphore traffic and

presents a well understood, NFS-like application interface. User data flows at

local disk speeds (vs. network speeds) over dedicated high-speed disk channels

while control traffic flows over a separate control network. The goal is to deliver

data at optimal speeds with no interruptions for read/write commands and flow-

control handshaking.

Essentially, The NSL proved the basic concepts of what we would now call a SAN file

system. Figure 3 illustrates a file read operation in the NSL prototype. Note that Figure 3

is almost identical with Figure 2. Details of the protocol operation are given in [3].

Step 1. Clien{
requests read
access to file.

I __ ,, cO.r;,:n.""_',

O Data Network _ ;

'', NSL UniTree Clients ' ,
I = I

=

Supercomputer Workstation

ii
SMP Computer

0 I

l °
NSL = °

UniTree ° °
°Prototype _ °

circa 1992

Figure 3." The NSL Proto_pe provided 3rdparty "LAN-less" data transfers.

The NSL prototype proved several points to the NSL collaboration:
1. It established that data transfers between a client and network attached disks could

give as good or better performance as native client disk.

230

2. Third-party data transfer allowed the transformation of the NSL server to function as

a metadata engine that could effectively control data sharing among clients while

maintaining high d_ ta rates.

3. Security is aided b_y separating control and data flow to separate networks.

4. Hierarchical storage, with movement of data between disk and tape, could be

implemented in the shared disk environment.

4. Security Implicati_ms for SAN File Systems

Whenever data is shared among multiple clients, effective security mechanisms must be

provided. In the case of robust global storage systems, security has historically been

enforced by the file or .,;torage server that effectively isolates clients from storage devices.

NFS v4, AFS, DFS, and HPSS are examples of" global storage systems that offer

authenticated and authorized transfers between the client and storage servers. However

when you make storage devices directly accessible to client systems, as in today's SANs,

you have in effect oper ed a "Pandora's box" of security problems.

In today's SAN envir(,nments, shared storage appears as directly accessible devices on

every client requiring _ccess to the shared data. The level of protection for a shared SAN

device is therefore no ;tronger than it would be for a local device attached to the client.

This means that if any SAN client machine is compromised at the operating system root

level, all shared data has been compromised. In effect, all shared-storage clients need to

trust each other. SAN zoning limits visibility of devices to specified hosts and can be

used to protect data by limiting access. But in cases where the goal is to make data

globally accessible to _nany clients, security risks are incurred if any but the most trusted

clients are added.

The NSL developers recognized this issue and provided a reasonable level of security by

using a secure private control network connection between the storage servers and the

network attached storage devices (See Figure 3). The storage system controlled access to

all shared data. Client_ '_,did not have direct access lo the storage devices because of the

nature of the IPI-3 third-party protocol. Access to a network connection was granted to

processes running on t:3e storage clients on a per-transfer basis. The storage system used

the secure private network to communicate with the MAXSTRAT disks, acting as the

third-party agent facilmting all transfers between the storage clients and the network

attached peripherals. 11 would have been very difficult for a rogue client to compromise

the security of the NSI_ storage environment with this mechanism.

A similar level of security rnust be developed for use in a current SAN environment

before the true power of SAN file systems can be safely realized. Object based

"Network-Attached Secure Disks" [7] could solve this problem if they are accepted

within the storage marketplace.

5. The Development of HPSS

The HPSS collaboration [4, 5] took up the work of the National Storage Laboratory

collaboration in 199,_ under a Cooperative Research and Development Agreement

(CRADA) between IB VI and several U.S. Department of Energy Laboratories (Lawrence

231

Livermore, Los Alamos, Oak Ridge, and Sandia). After reviewing the projected
requirementsof next generationhigh performanceHSM systemsand all available
hierarchicalstoragesystemsthen in existence,the collaborationconcludedthat it was
necessaryto developnew softwarethat would providea highly scalablestoragesystem,
anticipating the growth in data-intensivecomputing (100s - 1000sof terabytesand
Gigabyte/secdatatransferrateranges)while alsoprovidingrobustsecurityfor globalfile
access.As this wasto bea collaborativedevelopment,therewasneedfor openaccessto
sourcecodeamongall collaborationmembers.The first productionreleaseof HPSSwas
in 1995,with majorreleasessincethenat approximatelyone-yearintervals.Development
is ongoing, with about 28 full time equivalentdevelopers,including about 16 in the
Departmentof Energylabs.Ongoingdevelopmentis discussedin later sections.There
are currently over 40 production HPSSsitesworldwide in government,research,and
education.

The scalability requirementled to a network-centeredarchitecturethat allowed more
storagecapacityandincreaseddataratesby addingmanagementandstorageelementsto
a scalablenetwork.Like theearlierNSL prototype,HPSSwasdesignedto accommodate
intelligent third-party devicesbasedon the modelof the MAXSTRAT Gen4andGen5
disk arrays [4]. It wasassumedthat more intelligent third-party deviceswould follow;
however, it was recognizedthat most of the storagedevicesthat would be attachedto
HPSSwould be conventionaldisks, disk arrays,and tape libraries.To accommodate
conventionaldevices,the HPSScollaborationintroducedthe idea of a "Mover". The
notion was to attach SCSI disks and tape drives to low-cost computersrunning a
lightweight HPSSMover protocol. A dataMover andthe disksandtapesattachedto it
formed the equivalentof an intelligent third-party device.Thus the HPSSarchitecture
enabledboth ordinaryand intelligentdevicesandreasonablypriced computersto work
togetherwhilepreservingsecurityandaglobalnamespace.

Figure 4 illustratesthe network-centereddata flow of HPSSfor a file read operation.
Comparingthis figure with thepreviousNSL illustration (Figure3), onecanseethatthe
Moverandthe disksandtapedrivesattachedto it takeon theattributesof an intelligent
third-partydevice.

TheHPSSCoreServerpresentsthe imageof a file systemto theuser.Its mainfunctionis
to managethe client interfaceandthe system'smetadata(e.g.datalocationandsecurity
data).At the lower level involvedwith datatransfer,the lightweightHPSSMover code
worksonly with block I/O. Unlike conventionalnetwork-attachedstorage(NAS), HPSS
Movers transferdataover the network at a block level, not a file level, simulatingthe
low-level I/O of early intelligent third-party devicesandtoday's SAN-attacheddevices.
The Mover is strictly an intermediaryto transferlogical blocksof dataundercontrol of
theHPSSCoreServer.Seereferences[3,4, 5] for details.

Use of multiple Movers allow many concurrentdata transfers to provide very high
aggregatedata transferrates.HPSSalso supportsdatastriping (paralleldata transfers),
therebyprovidingveryfastsinglefile transferrates[4].

232

StepI i
Client L
requests

read access Ito file.

Step3
Data is
transferred
d rect y from
HPSS Mover to
client using
HPSS virtual
block transfer
over TCP/IP.

.==..=.. =..=.........==
i i

, HPSS Clients ExternalControlNetwork

! ;
I I

,'' HPSS
' " ", Core

TCP/IP Network _,,

I dedicated to data i

=_" HPSS Mover

!

HPSS Mover

Step 2
Access request is

'granted and 3 rd
} - party read

command is
passed to Mover.

Internal Control Network i

t
D 0.......°....

Figure 4: HPSS Movers create third-party capability using conventional devices.

HPSS, with its network-centered, third-party architecture is well suited to leverage SAN

technology. The next _,.ection explains how SAN technology is used with HPSS today,

and the sections that fo low show enhancements will further exploit SAN technology.

6. Today's SANs and HPSS

Today's SAN technolegy promises better management and sharing of storage devices
across HPSS Movers. :-;AN technology can simplify administration of large amounts of

storage and can lead to better system reliability.

HPSS LAN-based con:]gurations (refer back to Figure 1) are capable of providing very

high bandwidths, both -'or individual data transfers and in the aggregate across concurrent

file transfers and can furthermore support parallel, striped data transfers across multiple

disks or tape drives. The current HPSS Mover architecture allows devices to be run at

data transfer rates equal to 85% to 95% of the best possible device data transfer rates

achievable at the block I/O level. Inexpensive network technologies such as Gigabit

Ethernet, together with more efficient TCP/IP protocol implementations assure that LAN-

centered technology is neither a performance bottleneck nor a cost issue for today's

HPSS sites. Moore's i.aw has made Mover hardware inexpensive for lower I/O rate

devices such as tapes Izut for high throughput disk environments (100s MB/s per Mover)

Movers are still relatively expensive. Thus, neither initial cost nor performance are sole

motivators for introducing SAN technology into HPSS in some environments. For those

233

requiringMoverscapableof highestI/O rates,costmaybeamotivator.SANcapabilities
areimportantto theHPSScommunitybecausetheywill allow usersof HPSSmuchmore
flexibility to reconfiguredisksandtapedriveswhenneedschange.

Theability to reconfigureis especiallyimportantin caseof componentfailures,including
network,Mover, and devicecomponents.With SAN technology,disksand tapedrives
canbe quickly reallocatedamongMovers,allowing quick restorationof service.Going
onestepfurther,SAN technologyenablesdisksandtapedrivesto beconnectedto pairs
of HPSS Movers, allowing the use of fault-tolerant software such as IBM's High
Availability ClusterMulti-Processing(HACMP). All of thesecapabilitiesareavailable
with today'sHPSSjust as theyareavailablewith otherstoragesoftware,becauseSAN
technologypresentscomputerswith the imageof localdisksor tapedrives.Ourgoal is to
exploit SAN technologyas the high performancenetwork connectingboth clients and
devices.This allows clients direct accessto SAN devices,savingnetwork storeand
forwardsand datacopies.Above the SAN level of devicesharingand reconfiguration,
HPSSaddsthecapabilitiesof ahierarchical,sharedfile system.

Having looked at how HPSS sites use SAN technology today to aid system

administration and recovery from component failures, we now show how SAN capability

will be exploited in future releases of HPSS.

7. SAN-enabled Movers and Clients

We have set a course to enable client applications to read and write data directly over a

SAN, bypassing the existing store and forward character of TCP/IP networks when used

with SCSI devices. In doing so, we will also enable HPSS to read and write data directly

over a SAN for internal purposes such as migration and staging. The changes create
"SAN-enabled Movers" and "SAN-enabled Clients."

We are currently evaluating a prototype that is an extension of the IPI3 I/O redirection

mechanism for disk access described earlier in the paper. Devices are assigned to a single

Mover as is currently done in HPSS. In the case of I/O between a SAN-attached disk

device and a SAN-attached client, the SAN-enabled disk Mover redirects its I/O

descriptor (an internal HPSS data structure) to the client, which in turn can perform the

I/O operation directly with the SAN disk. The "client" in this case could be either a true

HPSS Client (i.e. a user) or another Mover such as a tape Mover. No data passes through

the disk Mover, as it is only used for the redirection control. Only a single disk Mover or

a small number of disk Movers would be required, reducing cost. This design is called
"I/O Redirect Movers."

We are also studying a design that allows HPSS to dynamically map a device to the a

Mover for a data transfer. This design is called "Multiple Dynamic Movers." Currently

devices are administratively assigned to specific Movers. With Multiple Dynamic Mover

capability, it will be possible to configure SAN-enabled Movers and Clients that are

equivalent to the I/O Redirect Mover capability in data transfer functionality and offer

dynamic device to Mover mapping, which may be useful for dynamic failure recovery

234

and loadbalancing.In the caseof Clients,this would beaccomplishedby combininga
SAN-EnabledMoverwith a conventionalClientAP1library.

We will have a protolypeof SAN-enabledMovers and Clients running in an HPSS
testbedin the springof"2002.Experiencewith that prototypeand the other designand
requirementsstudies tLnderway will lead to our final implementationchoices.The
selectionof the"I/O RedirectMover" or the"Multiple DynamicMover" will bemadeby
mid year 2002 so as lo deliver a SAN-enabledproduct in 2003. The discussionthat
followsappliesto eithe:approach.

For mostsystemsconfgured for SAN enablement,fewerMoverswill be required.Data
transferacrossa LAN is avoided.However,SAN enablementof MoversandClientswill
beoptional,andexistirg LAN-basedcapabilitieswill be fully supported.Sitesthat elect
to useSAN-enabledMoversandClientswill benefitfrom fewer "hops" betweenHPSS-
manageddisk andthe userandbetweendisk andtape.On theother hand,the stronger
inherentsecurityfor sharedstoragethatis affordedby thecurrentHPSSMover andLAN
approacheswill in geaeral(independentof HPSS) motivate somesites to use SAN
enablementonly for HPSSinternal functionsof migrationand staging,while retaining
LAN-basedclient funclions.Thiswill bediscussedin moredetail in Section10.

Now we look atthewaysSAN-enabledMoversandClientscanbeexploited.Theseways
are (1) LAN-less and Server-lessdatamovementfor HSM stageand migrate and (2)
LAN-lessdatamovem_,ntbetweenclientsandstoragedevicesdirectly overtheSAN.

8. LAN-less and Server-less Data Movement for HSM Stage and Migrate

The HSM stage/migrate function moves data between levels in the storage hierarchy,

usually consisting of disk and tape. In the current HPSS architecture, each storage device

is assigned to a single data Mover. Data that is being staged to disk or migrated to tape is

transferred between the respective Mover machines over a high-speed TCP/IP network.

SAN architecture is capable of making storage devices directly accessible to all Mover

platforms connected to the SAN. With SAN-enabled Mover approaches outlined above,

one Mover computer (which may run multiple Mover processes) will have the I/O

descriptors for both so arce and sink ends of the transfer. Thus it will have the capability

to migrate data from d,sk to tape or to stage data from tape to disk without moving data

across a LAN. Eliminating a LAN transfer should allow fewer Mover computers and

fewer LAN data connections. This is shown in Figure 5.

Going one step furthec, when devices and clients are directly attached to a SAN, the

potential exists for th,: actual data movement to take place without going through a

Mover by using the SCSI third-party copy command from a third-party agent. This

capability is used in some tape backup systems today, and the same capabilities can be

applied to hierarchica storage. Since the HPSS Mover software in Figure 5 has the

addresses of both the disk and tape drive (source and sink), it can be extended to provide

this third-party SCSI copy service or use another SAN agent specializing in this service.

235

We expectto considerthis Server-lessdatatransfercapabilityin thenearfutureandseeit
asa logicalextensionto theLAN-lessSAN enablementdescribedabove.

Data movement

(stage/migrate)
between levels in the

storage hierarchies
occurs through the

SAN and shared

memory of a mover.

TCPIP Control Network

["_'\ TCPIP I Data

The LAN is not
used when

moving data files
between disk

and tape in the

HSM hierarchy. !

II':::::::::!:.:.L:II
HPSS M_ll_el__ H_I_S Mover

r SAN-Enabled Movers share
access to all disk volumes

and tape d rives._________

Figure 5: LAN-less Stage/migration between disk and tape using SAN-enabled
Movers

9. LAN-less Data Movement between Clients and HPSS Storage Devices

The high performance user interfaces of HPSS are the Client API library, which is a

superset of the Unix standard I/O read and write services augmented for parallel I/O, and

Parallel FTP (PFTP), which is similarly a superset of Unix tip. The Client API library,

has code to support the Mover protocol and communicates with HPSS Movers using

TCP/IP if the client and Mover are on different machines, or by an internal transfer

mechanism if they are in the same computer.

SAN-enabled HPSS Clients will be able to access SAN-attached HPSS disks directly,

and potentially also SAN-attached tapes. This can be done because the Client will be

passed an I/O descriptor that describes the I/O operation to be performed. This is shown

in Figure 6. The benefit of a SAN-enabled Client API library on a client machine must be

weighed against the security exposure. This is discussed in the next section.

10. Security Considerations for Access to Storage: SAN versus LAN

We will now revisit security issues. Our assumption is that with today's generally

available Unix-based technologies, a person who acquires root access, whether with

authorization or not, can read and write any disk or tape that is configured as a local

device. This includes SAN-attached devices. This is a well-known vulnerability of SANs,

and it is the basic reason for zoning. The problem is that zoning and sharing data are

inherently at odds with each other. In an environment where access to a computer cannot

236

be limited by physical neans, then the information on shared devices is vulnerable to a

rogue user with root access on any SAN-attached machine zoned for access to the shared

data. (Zoning is a SAN capability that allows users to create multiple logical subsets of

devices within a physical SAN as mentioned earlier. Access to devices within that zone is

restricted to the memb,:rs of the zone.) For this reason and until improved technology

such as secure object-based devices [7] are available, server-facilitated access is currently

the safest course for a file or storage system shared across computers.

1
Both Servers have L

SAN-Enabled -- >
Clients

External Control Network

I I

HPSSClients

/

Compute _ ,1_ Visualization
Server Server

I |

DirEct [_ _ _/ l Direct
Client-Disk "_ \ _ / Client-Tape

Tran:'f_er _F--__-'_;:_ I __L Transfer

I............:2,1
I I

San-Enabled San-Enabled

Mover Mover

l I Internal Control Network

HPSS
Core

Server

Figure 6: With SAN-enabled Movers and Clients, HPSS has LAN-less access to disk

and�or tape storage.

Most large computer centers contain computer systems that are not likely to be

compromised, usually because access is limited. For systems where access can be limited

and trust exists, then sharing files across computers using SAN devices may present an

acceptable level of risk

Figure 7 shows appropriate use of current SAN and LAN capabilities for an example

limited-access computer system and for an example open-access computer system. The

configurations shown _re typical of large IBM SP computers, large Linux clusters, and

similar large-scale distributed architectures. By "limited access" we mean a computer

system where access L, physically controlled such that rogue users are very unlikely to

gain access to the I/O c lient nodes, while an "open" system would be less secure and the
I/O client nodes would be more vulnerable. For simplicity only the data paths are shown

in Figure 7. Control would typically be over a fast Ethernet.

237

Each computer system in the example of Figure 7 has a local file system such as the IBM

General Parallel File System (GPFS). GPFS is the principal file system for the IBM SP

and is also used with Linux clusters. GPFS as configured here would provide access to

files across nodes within each computer system but not across computer systems.

Therefore GPFS data accessible to one system would be on disk zones not visible to the

other computer system. This is the classic use of SAN zoning to protect each computer

system's local file system. Use of SAN zoning to allocate storage to HPSS and local file

systems is the heart of the administrative benefit of SANs.

[" - SAN administrative

I _Trusted systems tools can be used toLimited Access System can have local
(Trusted applications and users) IqPSS SAN-Enab ed _............... _ I restrict access in the

._• ..-. . _t _ OiSK storage pool:
I.I _ Chents , _]

___] I , _-_J < _L Zone 1: HPSS file space

h I "" " "/ ".... '11 _I_':F Disk _ and dskcache
4.... I" " " I

:S GPFS I ' IZone 31 "--_" Storage

_P Storage I ' _ System 'Zone 2 : GPFS for Limited

_: Nodes I ,," - Access Cluster
I i................ i

s[_ 3 : GPFS for Open

*' | SAN ! (_ Automatic Zone AccessCluster

; I ' Tape

Compute c HPSS I ,,, _t Library
Nodes hi SAN-Enabled I ',,, ':! _t controlled

Clients I

.J _= by HPSSt__...... HPSS

I / . .; Core

,"! L"", ": , _ r-_ _ Server

___"1 -1 GPFS II II!]T! IF::_II II_l , HPSS Control
i rovidesI Ii:i I!11 UI HPSS HPS. N,

P local I II_'i I_!l]'i/,ilMovers _ --

_e e Storage, _ file I I;: I_'_;:1I:! I
_°1 Nodes ; system. I _t _

_i_l--- ;"" High Speed TCP/IP '_'x

'c | (Nebt_ork I [7,,..
bompute i I ;'. dedicated to data transfers ' _r_ only access.,__ Ib_ HPSS Chents , . /" -

I_oaes (not SAN-Enabled) I " "%_" _ to HPSS allows

I _ better protection of

Open Access System t HPSSstorage
t_.(Un-trusted applications and users--) _,1 volumes.

i
Figure 7: Example of where HPSS provides a global file system to both trusted and un-

trusted clients.

HPSS, on the other hand, is typically configured such that files are globally visible across

all HPSS client computers (although HPSS clients can be configured with limited access

to particular classes of HPSS files). HPSS files in our example are in zones that are

visible to all HPSS Client nodes, both in the Limited Access System cluster and in the

Open cluster. As a result, data transfers from HPSS to nodes in the Limited Access

System cluster will occur over the SAN and no external LAN is required for data transfer.

SAN terminology would be "'LAN-less" or "LAN-free" transfer.

For a system with a reasonably small number of compute nodes in the cluster it would be

possible to put a SAN-enabled Client on each compute node, thereby eliminating the

need to transfer data across the backbone network of the cluster. However for a large

cluster or SP, this would require an equally large SAN switch. It would also open the

238

HPSSdatazonesto thv previouslydescribedvulnerabilityof SANs to rogueuserswith
root accessto thecompJtenodes.This vulnerabilityis nota limitationof HPSSbut isdue
to the lack of securitymechanismsto protect shareddata in today's SANs. It would
thereforebe recommen.tedthat in mostsituations,dedicatednodesbeusedfor theHPSS
Clients. At LLNL, for example, the normal practice is to use agents to transfer data

between HPSS and GI'FS, which serves as the local file system. Only the agents are

enabled to use the HPS S Client API and PFTP. Residing on SP nodes dedicated to I/O,

these agents and the c;ient API are protected from unauthorized access and hence the

associated SAN zones _re protected from unauthorized use.

The Open Access Syst._m, which is the less trusted of the two systems, is configured to

access HPSS files on13 through the LAN, using conventional capabilities of the HPSS

Client without SAN enablement. This provides the maximum protection for HPSS data.

11. Lessons Learned

The HPSS collaboration and the earlier NSL collaboration have dealt with the problems

of scalable, network-centered storage for over a decade. Our charter is to provide storage

software for large, demanding applications such as those of the Department of Energy

labs that sponsor HPSS. Other large applications where HPSS has been deployed include

supercomputer centers, weather, high-energy physics, and defense. Our "lessons learned"

apply both to this high end of hierarchical storage and archiving and we believe to SAN

file systems generally. Our experience has led us to a blend of LAN-based and SAN-

based technologies with the overarching requirements of scalability, high data rates,

shared access to files, security, high availability, and manageability.

Based on our experience with HPSS and our forty plus installations we have found that:

• High data rates anc scalability are supported by a network-centered architecture, but
not tied to either LAN or SAN.

• The lightweight H'SS Mover, which is based on a concept from the IEEE Mass

Storage Reference Model Version 5, is a usefill tool for scalabitity and facilitates

simple evolution to a_ard full support for SAN file system concepts.

• LAN-based and SAN-based technologies are complementary and can be mixed.

• Data rates are limiled by the hardware configuration (including the network and the

choice and number of devices) and not by HPSS software.

• Due to the lack of_n adequate SAN security mechanism, shared access to data is best

managed in a server-based environment for siluations requiring protection from a

rogue users who might obtain root access.

• Manageability and nigh availability are enhanced by SAN capabilities.

• Separation of data 1Letwork paths from control network paths enhances security.

We find that the blending of LAN and SAN capabilities of current and future releases of

HPSS effectively addr:sses scalability, high data rates, shared access to files, security,

availability, and manalgeability ways that are useful to high-performance data-intensive

computing. We believe that the lessons of NSL and HPSS have applicability to others in

our industry exploring or developing SAN based file and storage systems, as the current

explosion of electronic data goes on around us.

239

12. Acknowledgements

We wish to thank the early participants in the National Storage Laboratory for their

support of early network centered storage architectures and the many developers within

the HPSS Collaboration who have created HPSS. This work was, in part, performed by

the Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak

Ridge National Laboratory, National Energy Research Supercomputer Center and Sandia

National Laboratories under auspices of the U.S. Department of Energy, and by IBM
Global Services - Federal.

References

[1] The Storage Network Industry Association (SNIA) has an excellent dictionary on

their web site, www.snia.com. The dictionary is currently located in the "Resource

Center" area of the web site. The definitions in this paper differ somewhat from

SNIA definitions, but the authors acknowledge the authority of the SNIA dictionary.

[2] M. Bancroft, N. Bear, J. Finlayson, R. Hill, R. Isicoff, and H. Thompson,

"Functionality and Performance Evaluation of File Systems for Storage Area

Networks (SAN)," Proceedings Eighth Goddard Conference on Mass Storage

Systems, College Park, MD (Mar 2000). This paper has an excellent overview of

SAN file systems.

[3] R. Hyer, R. Ruef, and R. W. Watson, "High Performance Direct Network Data

Transfers at the National Storage Laboratory," Proceedings Twelfth IEEE

Symposium on Mass Storage, Monterey, CA (Apr. 1993). This paper documents the

history of NSL-Unitree and 3 rd party IPI-3.

[4] R. A. Coyne and R. W. Watson, "The Parallel I/O Architecture of the High

Performance Storage System (HPSS)," Proceedings Fourteenth IEEE Symposium on

Mass Storage, Monterey, CA (Sept. 1995)

[5] D. Teaff, R. W. Watson, and R. A. Coyne, "The Architecture of the High

Performance Storage System (HPSS)," Proceedings Goddard Conference on Mass

Storage and Technologies, College Park, MD (Mar. 1995). For more recent HPSS

architectural information, refer to the HPSS web site www.clearlake.ibm.com/hpss.

[6] C. Wood, "It's Time for a SAN Reality Check," available at

http://www.maxstrat.com/san_wht.html. This paper includes a discussion of third-

party data transfer as implemented in the MAXSTRAT Gen4 and Gen5 disk arrays.

[7] Garth A. Gibson, David F. Nagle, Khalil Amiri, Fay W. Chang, Howard Gobioff,

Erik Riedel, David Rochberg, and Jim Zelenka. "Filesystems for Network-Attached

Secure Disks" CMU-CS-97-118 July 1997

[8] Thomton, James E., "Back-end Network Approaches", IEEE Computer, Vol. 13, No.

2, Feb. 1980, pp10-17. This paper reviews the history of storage network

approaches and outlines the directly attached storage features of Hyperchannel.

[9] Watson, Richard W., "Network Architecture Design for Back-End Storage

Networks", IEEE Computer, Vol. 13, No. 2, Feb. 1980, pp 32-49. This paper reviews

why a shared file system approach is critical to success of storage networks and

outlines the architecture that became the IEEE Reference Model, UniTree and HPSS,

including third-party transfers, Movers, and direct device to device transfers.

[10] allSAN Research Services, http://www.allsan.com/marketresearch.php3

240

Introducing A Flexible Data Transport Protocol

for Network Storage Applications

Patrick Beng T. Khoo and Wilson Yong H. Wang

MCS A Group, NST Division - Data Storage Institute

Affiliated to the National University of Singapore

Funded by the a,gency for Science, Technology And Research Singapore

DSI Building, 5 Engineering Drive 1, 117608 Singapore
Tel: +65 8748413 Fax: +65 7772053

Email: patrick@dsi.nus.edu.sg

Web: http://nst.dsi.nus.edu.sg/mcsa/

Abstract

The purpose of this pager is to demonstrate that alternative solutions to current methods

exist for network storage. We would like to introduce one such alternative, a new

protocol that we call]_yperSCSI. This protocol is used for the transmission of Small

Computer Systems Interface (SCSI) family of protocols across a network and multi-

technology device sup_9ort. In this paper, we will outline some of the key features and

basic technical details of HyperSCSl. We have also developed several fully functioning

disk array prototypes using a variety of hardware and storage devices as well as

conducted benchmark; and performance tests on this. A performance comparison

between this new protocol and iSCSI and NFS is also included here.

1. The Problem

Research has been oagoing for ways to transport data over networks for storage

applications for quite some years. While we pursued efforts in developing network

storage technologies, we came across the following issues and concerns.

• High cost of Fibre Channel SANs - Implementing and managing FC-based SANs is

quite expensive. E,len if hardware costs were to come down (and we expect them to

do so), ultimately the "hidden" costs of systems, infrastructure, manpower and

software implementation and maintenance is still very high.

• TCP/IP SAN perfc,rmance is still not good enough without hardware acceleration -

TCP/IP is inherer_tly slow compared to FC-based storage technologies. Special

hardware for TCP, IP represents higher costs aad a more difficult upgrade path for

users.

• FC-based SANs cznnot do Storage Wide-Area Networks - FC is an inherently local

communications technology, and if one needs to go wide-area, the best method is to

use the ever preselt IP due to its wide-spread availability. Ongoing efforts such as

FCIP, iFCP and iSCSI are in line with this idea.

• Interoperability is weak at times - Vendors are also often stuck on the interoperability

of various storage products and systems. The fundamental issue is that vendors need

to differentiate their solutions in order to compete. However, this often results in

interoperability iss aes or worse, vendor lock-in for customers.

241

• Security is lacking - Normal TCP/IP and Fibre Channel do not provide serious

security for data transport. FC does have LUN Masking, but this is mostly a function

of the FC switch, not the storage device itself. IPsec does provide security to IP-based

applications, but adds yet another layer of complexity to an already difficult solution.

• Inability of existing storage technologies to apply to new areas - Existing network

storage methods do not take non-traditional applications and areas into account. An

example of this is in home and personal network storage and using simple infra-red,

Bluetooth or wireless LAN for small data access or transport.

• Difficulties in scaling - Existing systems scale upwards through new higher

bandwidth standards. This is often slow due to the standards process. Furthermore,

the scaling of capacity is difficult due to the continuous need to build and implement

larger and larger disk systems that are generally not modular enough.

Based on this background, we set about designing, developing and testing a new network

storage protocol that we hope will address these and other network storage issues. We

would like to present some of the results from our research and development efforts that

began in June 2000 in this paper.

2. Existing Solutions

Recent efforts in network storage have expanded to include development of alternatives

to pure Fibre Channel as the primary method for network storage. These efforts include

iSCSI, FCIP, SST and many others. Below are descriptions of a few of these efforts.

2.1. Fibre Channel over TCP/IP (FCIP)

Fibre Channel Over TCP/IP (FCIP) describes mechanisms that allow the interconnection

of islands of Fibre Channel storage area networks over IP-based networks to form a

unified storage area network in a single Fibre Channel fabric. FCIP relies on IP-based

network services to provide the connectivity between the storage area network islands

over local area networks, metropolitan area networks, or wide area networks [1]. What

this means is that FCIP is designed to encapsulate Fibre Channel over a TCP/IP-based

network for the purposes of connecting dispersed FC-based SANs.

2.2. iSCSI

The iSCSI lnternet Draft describes a transport protocol for SCSI that operates on top of
TCP [2]. iSCSI enables the use of SCSI devices over a TCP/IP-based infrastructure.

Other areas considered include Naming and Discovery, Boot and Security. It is important

to note that iSCSI is the only protocol currently in the process of standardisation that

allows for the construction of native end-to-end Ethernet SANs [3].

242

2.3. lnternet Fibre Channel (iFCP)

iFCP specifies an architecture and gateway-to-gateway protocol for the implementation

of Fibre Channel fabric functionality on a network in which TCP/IP switching and

routing elements reptacz Fibre Channel components. The protocol enables the attachment

of existing Fibre Channel storage products to an lP network by supporting the fabric

services required by such devices [4]. The purpose here seems quite clear, that is to

implement Fibre Channel fabric architectures over a TCP/IP-based network, thus

allowing FC devices to connect and run FC natively over a TCP/IP-based infrastructure.

2.4. Metro FCP (mFCP)

mFCP is a UDP-baseJ implementation of the iFCP over metro- and local-scale IP

networks. These networks are provisioned to have latency, reliability, and performance

levels comparable to that of a Fibre Channel network. Storage devices use the Fibre

Channel SCSI mapping in FCP for data transport and error recovery, mFCP leverages

these existing mecha_dsms to facilitate high-performance interconnection of Fibre

Channel- based storage devices over suitably provisioned IP networks. As in the case of

iFCP, Fibre Channel flames may be transported natively over such a network without

Fibre Channel switching and routing elements [5].

2.5. Internet Storage Name Service (iSNS)

iSNS provides a genelic framework for the discovery and management of iSCSI and

Fibre Channel (FCP) sLorage devices in an enterprise-scale IP storage network, iSNS is

an application that stores iSCSI and FC device attributes and monitors their availability

and reachability in an integrated IP storage network. Due to its role as a consolidated

information repository, iSNS provides for more efficient and scalable management of

storage devices in an Ii_ network [6]. iSNS is meant to be used with iSCSI, FCIP, iFCP

and such protocols for the hosts or servers to locate and use storage devices over a large
network infrastructure _';uch as the lnternet.

2.6. SCSI on Scheduled Transfer Protocol (SST)

The SCSI on STP standard defines a transport protocol within the SCSI family of

standards. The physical interconnects to which the SST protocol may attach are not

defined within this standard, but rather, are any interconnects or other protocols on which

the basic ST protocol may operate [7]. SST defines a mapping to carry SCSI traffic on

top of an STP-based in_'rastructure.

243

2.7. Basic Technologies

The above technologies are built on top of a basic set of storage technologies. There are

two such basic command sets today, ATA/IDE and SCSI. Based on these two command

sets, other derivative technologies have been developed. See Table 1 for a pictorial

representation of these technologies.

ATA 133

Serial ATA

SCSI-320

Universal Serial Bus

IEEE 1394 "FireWire"

Fibre Channel

SSA

iSCSI

iFCP

FCIP

SST

Table 1: Storage Technologies

At this point, we turn our attention to our development efforts of the HyperSCSI protocol.

Further in this paper, we will present a few ideas for thought regarding HyperSCSI and

various other technologies.

3. The Approach

The first thing we decided on was to standardise on using the Small Computer Systems

Interface (SCSI). It is the predominant mechanism for various storage and even non-

storage devices. The question then turned quickly to how we could make SCSI "network-

enabled". This gave rise to our idea of"HyperSCSI'.

We found that the requirements of local network storage (SAN) and wide-area network

storage (SWAN) are quite different. As such, we provided the capability to spilt

HyperSCSI protocol into multiple modes of operation. Two such modes are currently

being developed, one for local access, Local HyperSCSI over Ethernet (HS/eth), and the

other for wide-area connectivity, Wide-Area HyperSCSI over IP (HS/IP). The basic

protocol structure is essentially the same, thus allowing devices to speak local or wide-

area storage seamlessly. This has allowed us to adopt IP-based networking technologies

for wide-area applications where it is needed but bypassing IP entirely and putting the

protocol directly onto Ethernet itself for optimum local area communications. This model

also allows us to eventually develop HyperSCSI for other technologies, such as

Asynchronous Transfer Mode (ATM) for high speed Telco / ISP environments and

Wireless LAN for home or personal network storage.

Furthermore, since we are designing a low-level protocol, some of the intelligence or

command and control functions can be passed on to higher layers or the clients to adapt

and handle. This allows us to design a protocol that is lightweight and efficient, while

leveraging the intelligence and capabilities of both the storage system and host machine

244

to mutual benefit. For example,we allow device,securityand compressionoptions as
well as storagevirtualisation technologiesto be implementedon either the storage
system,host machine or both as the needs arise. In addition, packetisation and
virtualisationoptionscf HyperSCSIallow us to implementN-channelcommunications
technologiesin order lo use "scale-out" methodsof bandwidthand capacityincreases
with fault toleranceand reliability. Figure 1 shows a Local HyperSCSI packet on
Ethernet(HS/eth).A vdde-areaHyperSCSI(HS/IPI packetis essentiallythe same,but
built on IP insteadof directly ontheEthernet.

Ethernet

Frame

HyperSCSl
Packet

6-byte 6-byte 2-byte < 1500-byte

4-

4-byte < 1496-byte

4-byte

CRC l

Figure 1: HyperSCSI Packet

Finally, more advanced functions and capabilities were built into the HyperSCSI protocol

to support other requirements like dynamic management, dynamic flow control and in-

band management capabilities. Manufacturers, system integrators and technology

companies are not left out in the cold either. To enable the protocol to be interoperable,

and yet be able to support vendor-specific or implementation-specific functions, a special

set of dynamically negotiated device options has been designed into the protocol. These

options can be negotiated at connect time and depending on the configuration of the

clients and servers, be enforced, supported or ignored. Thus, HyperSCSI can provide a

minimum level of coanectivity for interoperability operations and while supporting

advanced vendor-specific or implementation-specific functions. Our initial encryption

methods demonstrate this function in action. Other possible device specific options

include read-only acce_, s, removable media locking and data compression.

245

4. HyperSCSl Operation

The HyperSCSI protocol comprises of various packet structures. These structures are

categorised by classes and then by specific types. Packets of a specific class and type may

also have more than one function depending on the context of the communication. These

packets are responsible for transmitting the SCSI data and commands as well as

managing the connection and communication channel. Table 2 illustrates some of the

packets in the HyperSCSI protocol.

_:_i¸ i!/i!_i!i_i!!!_' i̧i!_!!

HCBE_REQUEST HyperSCSI command block encapsulation request

HCBE_REPLY HyperSCSI command block encapsulation reply

CSI Conn_tion :C_ : :

HCC DEVICE DISCOV

ERY

HCC_ADN_REQUEST

Client issues this packet to discover storage devices on the
network

Authentication challenge and device operation negotiation

request

HCC_ADN_REPLY Authentication and device operation negotiation reply

HCC_DISCONNECT Termination of HyperSCSI connection

H Flow Control _ •
FC ACK SNR Flow control set-up and acknowledgement request

FC_ACK_REPLY Acknowledge reply

Table 2: HyperSCSl Operations

5. Typical HyperSCSl Connection Flow Sequence

Figure 2 illustrates a typical sequence of the communication stages between a client and

server using the HyperSCSI protocol. The various stages of the connection flow sequence
are described below.

246

Server

Connection

Setup

Flow Control

ACK Window

Size Setup

SCSl Data

Transmission

P

Dyn. Management
Re-authentication

and Re-negotiation

Terminate
Connection {

HCC DEVICE DISCOVERY

HCC_ADN_REQUEST

HCC ADN REPLY

FC ACK SNR

FC ACK REPLY

4

HCBE_REQUEST

4

HCBE_REQUEST

4

FC NCK REPLY

HCBE_REQUEST
d

HCBE REPLY

P

HCBE REPLY

P

• FC ACK REPLY

4

HCBE REPLY

v

HCCADN_REQUEST

HCC ADN REPLY

4

HCC DISCONNECT

d

Client

Figure ;_: Typical HyperSCSl Connection Flow Sequence

247

5.1. Connection Setup

The HyperSCSI connection setup is a three-step handshaking procedure between a

HyperSCSI client and server pair. Typically, in a storage network, the host machine

(HyperSCSI client) is responsible for locating and initiating connections to storage

devices (HyperSCSI servers). During this process, the HyperSCSI client issues a

HCC_DEVICE_DISCOVERY via Ethernet broadcast or IP packet, to locate devices on

the network. For IP-based situations, neither broadcast nor multicast methods are used.

Instead, a client must specify an IP address (or DNS name) and a

HCC_DEVICE_DISCOVERY packet is sent over IP directly to the server. Further

information about device discovery is covered in section 6.2. Once the HyperSCSI server

receives this packet, it checks the client address for authentication purposes and transmits

the HCC_ADN_REQUEST packet back to the HyperSCSI client. In order for the

HyperSCSI client to establish a connection with the HyperSCSI server, it must then send

the correct response through a HCC_ADN_REPLY command and add the ID numbers of

the devices that it has access to into its own registry. If the server successfully

authenticates the HCC_ADN_REPLY, the connection is accepted and the HyperSCSI

client can now send commands to the server. Within the HCC_ADN request and reply

method, authentication challenges, encryption key exchanges, device specific option

negotiations and other information supporting N-channel communications such as

server/client IDs and network addresses are also provided and exchanged.

5.2. Flow Control and ACK Window Size Setup

An ACK mechanism has been adopted to support flow control of data between an

HyperSCSI client and server pair. The ACK window size refers to the number of packets

that the transmitter may continuously send before waiting for an acknowledgement. This

window size must be negotiated and agreed upon before data flow can take place and is

set by the requestor through an FC_ACK_SNR command. This packet is issued as a

separate message and typically, the server will be the one to issue this command so that

the server has the ability to balance loads or priorities across multiple clients, although

this does not mean that the client may not issue one either. Once the FC_ACK_SNR has

been received, the new status will be acknowledged to the requestor with an

FC_ACK_REPLY. If the requestor receives the acknowledgement, it assumed that the

window size is accepted and packet transmission using the new window size can begin.

The ACK window size can be set based on traffic loads, or buffer capacities and can be

set at start-up or changed dynamically during run time. This allows for different window

sizes to be dynamically set by clients and servers to fit changing performance, reliability

or QoS requirements. For example, under bad network environments, windows sizes can

be reduced, while under optimum situations, window sizes can be increased for better

performance. However, we are still studying algorithms for the detection of network

congestion and updating of the window size during run time. The basic protocol supports

this capability and we will include this portion when it is complete. Transmission

windows used here are neither fixed nor sliding in nature, but rather utilises a moving

window scheme similar to credit-based schemes used in Fibre Channel, but measured in

windows rather than individual packets. In addition, the FC_ACK_REPLY is also used to

acknowledge the correct reception of a window to the requestor and synchronises the data

flow between an HyperSCSI client and server pair. In this case, it functions as an

248

indicatorof thereceiveistatusfor normalHyperSCSIdatatransmission.If thetransmitter
doesnotreceivethe correctFC_ACK REPLYpacketwithin a timeoutperiod,it will re-
transmitall thepacketsin thewindow in questionagain.Anotherretransmissionscheme
supportedis by usingthe FC_ACK_SNRto querythe receiver'sstatus.The transmitter
can then use the FC ACK REPLY results to re-calculatethe next packet to be
transmitted.With thesetwo schemes,re-transmitscanbe conductedselectivelyor by
ACK windows,thusgi_ing usersa highlevel of flexibility in controllingtheflow of data
andcommands.

5.3. HyperSCSl Data Transmission

When there is a SCSI 1equest from the local OS SCSI upper layer of the host machine,

the HyperSCSl client software is responsible for converting the OS-specific SCSI

command block togeth_:r with any relevant data (as in a write command) into a platform

independent HyperSC_I Command Block (HCB). The client then encapsulates and

fragments the HCB into one or more HCBE_REQUEST packets that it sends to the

HyperSCSI server. SCSI command blocks and user data will therefore be transmitted

together in the sarne packet. The HyperSCSI server receives the data stream, re-

assembles the HyperSCSl command block and relevant user data, converts it back to an

OS-specific SCSI comlnand block and passes it to the relevant hardware for execution.

When the result of this SCSI request is ready, the HyperSCSI server will send the result

together with the reque_';ted data back to HyperSCSI client by issuing the HCBE_REPLY

packet stream in a similar manner as the request. The HyperSCSI client reassembles the

HyperSCSI command I:lock and converts it back to a OS-specific SCSI command block

before passing it on to the local OS SCSI upper layer. During this transmission, flow

control mechanisms ar,_ in effect through the use of FC_ACK_REPLY commands as
described in section 5.2

5.4. Dynamic Manage_nent

During a HyperSCSl connection, the HyperSCSl server will regularly (timer-based) issue

a HCC_ADN_REQUEST command for three purposes, re-authentication of clients and

key-exchange for security, re-negotiation of device options (if permitted), and as a form

of "keep-alive". Through this method, servers not only poll the client's status, but also

check its identity. Furtl_ermore, if HyperSCSI encryption options are turned on for data

transmission, the HCC ADN_REQUEST and HCC ADN_REPLY uses an authenticated

exchange mechanism to update and change encryption keys. This scheme also allows a

device's options to be Hodified dynamically. For example, a device which does not have

encryption enabled ma/ turn it on during this time so that the communication will be

secured from this poir_t onwards. To enable such remote management functions, an

encrypted Managemenl Command Stream is used to transfer management commands

from a client to a servel or vice-versa. This MCS also allows adding or removing clients,

requesting the change of device options, changing access passwords and device access

permissions. The MCS is implemented within a valid HyperSCSI connection, thus only

authenticated HypcrS('SI clients and servers can use this in-band management
mechanism.

249

5.5. ConnectionTermination

The HyperSCSI client can close a connection by sending an HCC_DISCONNECT

command to the HyperSCSI server. The server will then remove this client from its

connection list and close the connection. Servers do not need to acknowledge disconnect

requests from clients because SCSI connections are host-target based. Unlike TCP/IP

connections, which are full-duplex and can be closed by both clients and servers, SCSI

connections can only be terminated (gracefully) by clients. If a server were to terminate a

connection, it implies that service has been lost (or a hard disk has crashed). Servers do

not keep connection information forever, and will drop relevant connections if "keep-

alives" (as outlined in section 5.4) to a particular client should fail for some reason.

Through the use of hashing, encryption and security methods (see section 6.3),

connections are protected from denial of service attacks from hackers arbitrarily using the
HCC DISCONNECT command.

6. Feature Comparison

There are many points to consider when making comparisons of HyperSCSI features to

other technologies. In the area for security for example, HyperSCSI makes use of

sequence numbers, hashing, SCSI command identifiers, digital keys and other

mechanisms to secure a connection, similar in some areas to IP and SCSI. A point to note

has been that where possible, we have tried to adapt good ideas and mechanisms from

other technologies for use in HyperSCSI. A good reference is the six manipulation

functions used in any data transport protocol [8]. Thus, while differences exist,

similarities will definitely show up as well in any comparison with HyperSCSI. Presented

in Figure 3 are some ideas for consideration.

Figure 3: Protocol Stack Comparison

6.1. Storage Device Management

As it turns out, this is a key aspect of network storage that is often neglected. Proprietary

enterprise management software or dedicated SAN management software from vendors

or switch manufacturers is often required to properly manage the storage devices. Fibre

Channel devices, switches and arrays often have an additional Ethernet port and IP

address for access from the management software. HyperSCSI provides an in-band

management mechanism that allows properly authenticated (and permitted) clients and

servers to manage each other's settings and properties. Some device and management

options can even be modified and updated dynamically during a connection.

250

6.2. Device Discovery Mechanisms

To identify and locate storage devices, Fibre Channel has World Wide Name (WWN)

while iSCSI/FCIP/iFC_) use iSNS. Such mechanisms are complex and add another

hindrance to achieving ease of use and even plug-and-play networking. For this purpose,

HS/eth uses standard a broadcast device discovery, mechanism to dynamically locate

targets on the network. If a server is configured to allow a particular client to attach, it

will respond appropriately, else the discovery request is ignored. Thus the only

configuration users have to be concerned about is granting permissions, rather than

setting up complex name servers of some type. This is particularly useful in a plug-and-

play wireless personal storage network environment. HS/IP on the other hand, leverage
standard DNS mechanisms to "locate" a server across the network. We do not endorse

the idea of "broadcast / multicast to find out who's out there on the Internet" as a means

to locating storage re;ources. Storage being a key and critical resource should be

managed as securely _,s possible, especially if it is on a public or private IP-based

network. If protocols .,'an be routed, physical security of the storage network is less

assured. As such, administrators should know before hand the IP or DNS address of the

client and server, configure them accordingly and not have such information

"discovered" for security reasons. This also means that there is no single point of failure

like having iSNS servers or requiring expensive switches with additional intelligence

built-in. HyperSCSI clients will then attempt to connect to the server address given to it,

and no other. The only configuration that users need to worry about in the end is granting

permissions.

6.3. Security

All three TCP/IP based encapsulation methods iSCSI, iFCP and FCIP provides for and

requires the use of IPsec for securing the TCP/IP connection. Certainly, this is a step

forward when considering that Fibre Channel's main security mechanism is LUN

masking which is implemented mostly on the switch. However, using IPsec implies

securing the entire cornection. This is different from the more flexible LUN masking

method that FC uses to allow the user to secure individual LUNs as the case may be.

HyperSCSI thus supports security options to be specified by individual devices (or

LUNs) instead of at the connection level. Of course, iSCSI for example, only supports

one LUN per connecTion, while HyperSCSI can have multiple devices in a single

connection, as outlined in section 6.4. It should also be noted that like Fibre Channel,

HS/eth (which does nol use IP at all and is not routable) would require physical access to

the network in order to hack it. HyperSCSI also allows for security to be modularised into

different levels of requirements such as hashing, encryption or none at all, thereby giving

even more options to secure (or not) the device and/or the connection.

6.4. Multiple Device _ ccess

iSCSI uses one or morz TCP connections to make up a single session and requires that

across all connections within a session, an initiator sees only one "target image". All

target identifying elemcnts, like LUNs, are the same [9]. While this makes sense in a pure

SCSI environment, where a single host bus adapter would see a single target to have one

"target image", this mac not be true in a network storage environment where usually disk

arrays of one or more t _rgets may be "exported" to The initiator. HyperSCSI on the other

251

handallows a singleconnectionto haveaccessto asmany SCSI devices (or LUNs) as

supported by both the initiator and target. This single connection can then be established

as a virtual channel over multiple physical links to form a redundant trunk. Devices that

may require multiple LUN access includes optical jukeboxes and tape libraries.

6.5. Optimising Performance

One of the most controversial aspects of performance for network storage are the

overheads of TCP/IP. Industry analysts have noted that the TCP/IP stack is very CPU

intensive and without complex optimisation techniques like hardware accelerators,

interrupt coalescing, checksum offloading, and so on [10], the only practical application

for iSCSI is to extend current Fibre Channel SAN-to-LAN connectivity into the realm of

SAN-to-MAN/WAN connectivity [11]. If every implementation were to require TCP/IP

implemented in hardware, it would be no different than requiring all devices to have

Fibre Channel hardware built-in. HyperSCSI can bypass TCP/IP entirely to build a

storage network similar to (and capable of replacing) Fibre Channel architectures, but

using plain old Ethernet instead. For wide area implementations, HyperSCSl does in fact

also support the use of IP-based infrastructure for building Storage Wide-Area Networks

through HS/IP, a strategy which is no different from Fibre Channel. It should also be

noted that while HS/eth reduces overheads partly by eliminating certain checksums (ie.

header checksum), IPv6 also does away with the header checksum. IPv6 designers felt

that the risk was acceptable given that data link and transport layers check for errors [12].

Another key point of HyperSCSI is its reliance on state tables so that information about a

connection does not have to be retransmitted over and over again. Such information

includes SCSI host/target information, device options and HyperSCSI sequence numbers.

This is also similar in idea to STP's architecture of setting up the receiving buffer and

related information before transmitting data [13]. This is also a security benefit since the

capture of a single packet is unlikely to reveal much information about the connection

itself. For HS/IP, only one IP port is required, since each client can access multiple

devices through a single connection, unlike iSCSI (see section 6.4).

6.6. Flow Control Issues

Fibre Channel is often touted as the best solution for network storage due to its high

speed packetised but dedicated channel for storage, iSCSI on the other hand relies upon

TCP/IP for flow control and packet transmission and can leverage TCP/|P's sliding

windows as a counter to the idea of packetisation being less efficient compared to

dedicated channels. To provide the best of both worlds, HyperSCSI adopts a moving

window mechanism but makes the window size dynamic. A balance is provided in that

the window size does not fluctuate like TCP/IP's sliding windows, but can and does

change dynamically in the middle of a connection. Since this window size is dynamically

controlled by clients and servers, algorithms for determining the window size can be

adopted to find the optimal window size during run-time, thus adapting to network

congestion. This is particularly evident in HS/eth implementations. HS/IP of course

leverages standard IP-based methods for flow-control issues. In addition, retransmission

can be implemented either using a selected retransmission scheme or a simpler window

retransmit scheme. This can be decided based on the implementation environment, thus

giving users a wide degree of flexibility and performance tuning options.

252

6.7. Simplicity, Interoperability and Diversity

HyperSCSI is designed from the ground up to be simpler for users to implement and yet

capable of achieving interoperability without sacrificing diversity. For this purpose,

negotiable device options allow for vendor-specific or implementation-specific features

to be supported. If different vendor devices with different supported device options were

to try to connect to each other, the worst case is expected to be a basic connection with no
additional features or functions. When used in conjunction with the varied SCSI-3

command set and the Management Command Stream, this becomes quite a powerful

value-added option for vendors and users alike.

7. Development Progress

We have implemented and tested HyperSCSI under various conditions over Fast Ethemet

and Gigabit Ethernet. The results so far have proven to be most encouraging. Today,

HyperSCSI on Gigabit Ethernet achieves a quick 96% of the local physical disk

performance compared to iSCSI's 82% for block level access. The results are even better

when considering file system level tests. Using a straightforward file copy test,

HyperSCSI can reach _8% of the local physical disk performance, iSCSI managed 43%

while NFS only succeeded to match 39%. Not only that, it can be seen that HyperSCSI

provides a more reliable and predictable performance level similar to that of the local

physical disk than k';CSI or NFS and is less dependent on caching to achieve

performance. One mi_iht wonder why iSCSI performance is not as good as expected.

Seeing how iSCSI pertbrmance seems to closely track NFS performance, we hypothesise

that the TCP/IP overl'ead is the differentiating factor between iSCSI and HyperSCS!

performance. The follcwing charts highlight some of the performance measurements that

we have conducted.

The results illustrated _n Figure 4 represent results from five different tests, two of which

were raw block level reads (hdparm and dd) and the other three represent data access

above the file system level. These tests were done on the same hardware and the same OS

for all three technologies and both the client and server. We used two AMD Athlon

1.2GHz SMP machines with 32-bit 33MHz PCI busses, 266MHz 256MB DDR RAM

running RedHat Linu× 7.1 using the standard Linux kernel version 2.4.16, one of which
was the client and the other was the server. Both machines had 3Corn 3C985B-SX

Gigabit Ethernet NIC;, connected over a cross connect fibre-optic cable with jumbo

frames, and the server ased an Adaptec 39160 U160 SCSI controller. The server exported

8 IBM UltraStar U I60 9.1GB 10k RPM drives contigured in RAID 0. For the tests using

a file system, Linux Ext2 was used as the file system. We used NFS version 2 over UDP

from the RedHat Linu_ RPM version 0.3.1-5. The iSCSI version we used was version 6

from Intel, while the I-iyperSCSI version was 110-011226. The destination for the cp test
was/dev/null while the Iozone version used was 3.71. We would like to draw attention,

not to the absolute nurlbers of MB/s, but rather to the performance comparisons between

iSCSI, NFS and HypelSCSI.

253

¢I

lift
=[

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

Benchmarks - GE Jumbo / RAID 0 / SMP / 1GB Data Set

• NFS

• iSCSI

[] HyperSCSI

Block Read - Block Read -dd File Read - cp File Write - File Read -
hdparm iozone iozone

Figure 4: HyperSCS! Block and File Access Performance Comparison

Feature-wise, the HyperSCSI reference implementation already supports standard SCSI

hard drives, IDE hard drives, software RAID / virmalised drives, optical disks (like

DVDROM and CDRW), USB devices (like Iomega Zip Disk) and SCSI tape drives (like

HP DAT40). We have even successfully used HyperSCSI is to write CDs remotely over

our own live corporate LAN. File systems like Microsoft's FAT16/FAT32, SGI's XFS,

IBM's JFS and Linux Ext2/Ext3 have all been successfully tested on HyperSCSI drives.

HyperSCSI clients and servers have been successfully implemented on Linux, while

client versions on Windows 2000 and Solaris 8 is currently in development. Encryption

schemes that have already been implemented include 64-bit Blowfish and 128-bit

Rijndael. HyperSCSI has been assigned its own IEEE Ethertype Number, and will soon

receive a registered IP port for HS/IP implementations.

Areas that are currently under development (at the time of writing of this document)

include aspects of the Management Command Stream, the Transmission Pause / Resume,

various hashing and security related options, HS/IP implementation and Windows 2000

and Solaris 8 versions of the Linux client. With continued optimisations and bug-fixes of

the reference implementation, we expect raw block data read speeds for a RAID0

subsystem of 8 drives on normal frame Gigabit Ethernet to exceed 100MB/s in early

254

2002. Another effort mderway is the testing of several N-channel communications

schemes for HyperSCS,I. A Peer Round-Robin scheme is likely to be used in the final

implementation. The documentation of HyperSCSI specifications is also critical in order

to allow other organisa ions to adapt and build their own HyperSCSI solutions. Currently

there are three documents in the HyperSCSI specifications, HyperSCSI Protocol

Specifications, H_H_.y_ergCSI Security Specifications and HyperSCSI Management

Command Stream Specifications. A Quick Reference Manual, Reference Implementation

Source Code Documentation, and various introductory documents like this one will also

be provided. These documents will be available on our website when completed.

8. HyperSCSI Applications and Conclusion

HyperSCSI in Action

Remote SAN Access

r'----'-- "--I " _Val ue-Added // HS/IP

I Movie [_,_Video Services // TCP/ZP _,

_J Borrowing //

_r Remote

/ SAN Access

Digital Storage

Video Play/Record

Fax Receive/Send

Voicemail

Secure

local access

& optimised
wide-area

support

Figure 5: HyperSCSl in Action

We believe that HyperSCSI provides an opportunity to address various concerns and

open up new possibil ties for network storage. The Local HS/eth protocol allows the

construction of high-speed Ethernet based SANs while the use of Wide-Area HS/IP

permits mobile devices like laptops to access the corporate SAN directly (bypassing

servers if need be). Slorage devices can support SAN or NAS or both access methods

simultaneously through the use of a single network interface. Home devices will also be

able to access storage directly with simple plug-and-play methods over Fast Ethernet or

Wireless LAN using I-lyperSCSI's device discovery schemes. HyperSCSI has also been

designed with the future in mind. It supports more than 32,000 different device options
that will allow vendols to introduce a wide variety of vendor-specific capabilities and

technologies, without sacrificing interoperability. The protocol also allows each single

255

HyperSCSIconnectionto handle64 simultaneousin-transit SCSIcommands,eachwith
SCSI commandblock sizesup to 512KB. TheseSCSI commandblock sizescan be
further increasedsix-fold by using Gigabit Ethernetjumbo frames,thus providing an
evenhigherlevel of performance.

In conclusion,we believe that HyperSCSIis a relatively simple technologythat can
provide userswith performance,security,scalability and flexibility, thus making it a
viablealternativesolutionfor networkstorageapplications.

For more information on HyperSCSl,
http://nst.dsi.nus.edu.sg/mcsa/

please visit our website at

9. Acknowledgements

The authors would like to thank various people who have helped tremendously in the

writing of this paper. First and foremost of course is Rod Van Meter who provided

valuable feedback and reviews of our work, and in so doing helped us produce a better

paper. In addition, various people have contributed tremendously in the development and

testing of HyperSCSI, including Alvin Koy, Ng Tiong King, Vincent Leo, Don Lee,

Premalatha Naidu, Wang Hai Chen and of course, Wei Ming Long, who carried out a lot

of work on the testing environment. Thanks also to Jimmy Jiang, Lalitha Ekambaram and

Yeo Heng Ngi, who have contributed much to the development of HyperSCSi on

Win2K. This has been a team effort and our thanks and appreciation goes out to all that

have helped in one way or another.

References

[1] IPS Working Group Internet Engineering Task Force, "Fibre Channel over TCP/IP

(FCIP) Internet Draft", November 2001

[2] IPS Working Group Internet Engineering Task Force, "iSCSI Internet Draft",
November 2001

[3] Brent Ross, Adaptec Inc, "lP Storage and iSCSI - The SAN Fabric of Choice",

Proceedings of Storage Area Networks Conference 2001

[4] IPS Working Group Internet Engineering Task Force, "iFCP - A Protocol for

Internet Fibre Channel Storage Networking Internet Draft", November 2001

[5] IPS Working Group Internet Engineering Task Force, "mFCP - Metro FCP Protocol

for IP Networking Internet Draft", May 2001

[6] IPS Working Group Internet Engineering Task Force, "Internet Storage Name

Service Internet Draft", November 2001

256

[7] American National Standard of Accredited Standards Committee ANSI NCITS

Tll.I Technical Committee, "Information Technology - SCSI on Scheduled

Transfer Protocol ISST) Work Draft", July 2001

[8] David D Clark and David L. Tennenhouse, "Ar,-hitectural Considerations tbr a New

Generation of Prolocols", ACM SGICOM 1990 Symposium

[9] 1PS Working GrJup Interact Engineering /ask Force, "iSCSI Interact Draft",
November 2001

[I0] Jeffrey S. Chase, Andrew J. Gallatin and Kenneth G. Yocum, '_End System

Optimisations for High-Speed TCP", IEEE Communications Magazine, April 2001

[11] Roy Levine, "lP-based Storage: Benefits and Challenges", lnfostor, March 2001

[12] Andrew Conry-Murray, "lnternet Protocol Version 6", Network Computing,
December 2001

[13] American National Standard of Accredited Standards Committee ANSI NCITS

Tll.1 Technical Committee, "Information Technology- Scheduled Transfer
Protocol Revision 4", October 2000

[14] Network Working Group Internet Engineering Task Force (IETF), "Internet Protocol

Version 6 (IPv6)Specification RFC 2460", December 1998

[15] American Nationtl Standard of Accredited Standards Committee ANSi NCITS T I0

Technical Committee, "SCS1-3 Architecture Model (SAM)", 1996, Revised 2001

[16] American National Standard of Accredited Standards Comrnittee ANSI NCITS TI1

Technical Committee, "Fibre Channel Protocol (FCP)", 1996, Revised 2001

[17] Information Sciences Institute University of Southern California, "lnternet Protocol

DARPA Internet Program Protocol Specification RFC 791", Septernber 1981

[18] Information Sciences Institute University of Southern California, "Transmission

Control Protocol DARPA lnternet Program Protocol Specification RFC 793",

September 1981

257

Point-in-1 ime Copy: Yesterday, Today and Tomorrow

Alain Azagury, Michael E. Factor and Julian Satran

IBM Research Lab in Haifa

MATAM, Haifa 31905, Israel

{azagury, factor, satran} @il.ibm.com

Phone: +972 4 829-621 l, Fax: +972 4 829-6116

William Micka

IBM Storage Systems Group

9000 S RITA ROAD, Tucson, AZ, USA

micka@us.ibm.com

Phone: +1 520 799-,4132

1. Introduction

Making copies of large sets of data is a common activity. These copies can provide a

consistent image for a backup, a checkpoint for restoring the state of an application, a

source for data mining, real data to test a new version of an application, and so on. One

characteristic all of the;e uses have in common is that it is important that the copy appear

to occur atomically, i.e., any updates to the data source being copied either occur before

or after the copy. In this work, we examine the hislory, the state-of-the art, and possible

future of mechanisms tor copying large quantities of data via storage subsystem facilities

for providing point-in-time (PIT) copies.

The Storage Networkirg Industry Association (SNIA) defines a point-in-time copy as:

A fully usable cop5 of a defined collection of data that contains an image of the

data as it appeared at a single point-in-time. The copy is considered to have

logically occurred at that point-in-time, but implementations may perform part or

all of the copy at olher times (e.g., via database log replay or rollback) as long as

the result is a consistent copy of the data as it appeared at that point-in-time.

Implementations may restrict point-in-time copies to be read-only or may permit

subsequent writes to the copy. Three important classes of point-in-time copies are

split mirror, change..] block, and concurrent. Pointer remapping and copy on write

are implementation techniques often used for the latter two classes, c/. snapshot [1]

As hinted at by the above definition a range of point-in-time copy facilities exist. Some

of these facilities operz te at the logical level of the tile system [2][3] and some operate at

the physical level of the disk storage subsystem [2][4][5][6]. We focus on copy facilities

provided by disk storage subsystems.

259

Before the inventionof point-in-time copy facilities, to createa consistentcopyof the
data,the applicationhadto be stoppedwhile the datawasphysically copied. For large
datasets,this could easily involve a stoppageof severalhours;this overheadmeantthat
therewerepractical limits on makingcopies. Today'spoint-in-timecopyfacilities allow
a copy to becreatedwith almostno impacton theapplication;in otherwords,other than
perhapsa very brief period of secondsor minuteswhile the copy is established,the
applicationcancontinuerunning.

This paperdescribesthe functionalityof a point-in-timecopy facility anddescribesboth
the benefitsand drawbacksof providing this facility on the storagesubsystem.While
there are other benefits, the biggest benefit of providing this facility on the storage
subsystemis performance;we do not needlesslyaddloadto the storagenetworkor host
as part of making the copy. The biggestdrawbackis that the storagesubsystemin
today'sworld is only awareof dataat the level of logicalunitsandblocks;i this makesit
hardto meaningfullyperformcopiesat agranularityof lessthananentirelogicalunit.

After defining the conceptof point-in-time copies,we briefly survey severalexisting
approachesincludingEMC's YimeFinder[4],IBM [7] andStorageYek's[8] virtual array
solutions,andseveralfile systembasedapproaches.Although the focusof this paperis
on point-in-time copy solutions for block controllers, we also describe file system
snapshots,in particularNetwork Appliance'ssnapshotfeature[9]. We thendescribethe
FlashCopy facility of IBM's Enterprise Storage Subsystem(ESS) [6] which was
developedin our labs;we presentperformanceresultsshowingthat this facility allows
copyingarbitraryamountsof datain almostzerotime.

We thendescribeonepossiblefuturefor point-in-timecopy facilities. We seetwo main
futurethrustsfor point-in-timecopy facilities. This first is improvedperformance;while
today's facilities canmakea copy in almostzerotime, eventhis is sometimestoo much
time. The secondis a meltingof thedivision betweentheorganizedlogical view of data
implementedby a file systemandthe physicalview asseenby today's disksubsystems
[10]. In particular we believe that the arrival of object basedstoragee.g., [11], will

provide a critical enabler for allowing a disk subsystem to provide a physical point-in-

time copy of logically meaningful data.

The rest of this paper is organized as follows. The next section provides a background on

point-in-time copy facilities, describing the different approaches to implementing these

facilities and the tradeoffs between point-in-time copies at the file system level and at the

storage subsystem level. Section 3 describes several existing facilities for point-in-time

copy and Section 4 describes the FlashCopy facility of IBM's ESS, showing how this

facility allows copying almost arbitrary amounts of data in nearly zero time. In Section

5, we describe one possible course of development for point-in-time copy solutions prior

to concluding.

2. Background

As we stated in the introduction, a point-in-time copy may be made for many reasons.

While backup is probably the most common reason, checkpointing, data mining, testing

260

and other reasonsalso exist. In all cases,prior to making the copy, applications
accessingthedatamustpurgeanycachesthey have; many middleware applications, such

as databases, provide rrechanisms to ensure that the underlying storage subsystem or file

system has a consistent copy of the data without stopping the application. In addition, for

copy facilities provided by the storage subsystem, the file system must ensure that it has

written a consistent image of the data to the storage subsystem.

Obviously if the data to be copied involves multiple entities, e.g., multiple logical units or

multiple file systems, tl,is quiescing of the application must occur atomically for all of the

entities. Only after all of the copies have been mad,z, is the application again allowed to

modify the underlying data. This means that application access to the data is limited for

the duration of time it takes to execute the copy.

Prior to the development of point-in-time copy solutions, the only way to make a copy of

a data set was to allocate space and physically copy the to data. To ensure consistency,

the application was no allowed to access the data while the copy was being executed.

Since the time requireci to execute a physical copy is a function of the size of the data,

this could easily lead to an application being unavailable for an extended period of time.

This time overhead, as well as the need to fully allocate the space required for the target,

limited the use of copies; one would not copy an entire volume of data every hour for

purposes of checkpoint ng an applications state.

In none of today's popular facilities, however, does the point-in-time copy command

execute a physical copy of the data. Instead the data is either copied prior to the

execution of the commmd or some form of copy-on-write like facility is used. Not only

does this reduce systerl overhead, but also it enables copies to be used in the range of

applications listed above.

As stated above, there are different classes of implementations of point-in-time copy. In

a split mirror a mirror of the data is constructed prior to the point-in-time copy. After a

complete mirror of" th,_ data to be copied exists, the point-in-time copy is made by

"splitting" the mirror at the instance in time of the copy. The biggest benefit of a split

mirror solution is that the point-in-time copy executes very quickly; there is no work

required in order to create tables or mark data as copy on write. On the other hand, split

mirror suffers from a significant drawback in terms of advanced planning. One cannot

create a split mirror at any time one wants; rather, it is necessary to plan ahead and create

the mirror in advance cf splitting. Since the mirror requires a complete physical copy of

the data, the set up for creating a split mirror must begin significantly prior to the actual

point-in-time copy. A second drawback of a split mirror solution since it is based on

physical mirror copy is that it inherently requires that the space allocated for the target of

the copy be equal to the space used by the source. Finally, the overall storage system

performance is affected by the requirement to continuously mirror the changes until the

administrator decides to split the mirror.

One variant of a split mirror solution allows the mirror to be resynchronized with the

source. When this is d_ne, only the records of the source, which have changed since the

mirror was split, are co.pied to the source. This allows a true mirror to be created much

261

fasterthanif theentiredatasetneededto bephysicallycopiedto themirror. This variant
does,however,requirework to createdatastructuresto trackwhich recordsin thesource
havebeenmodified.

A secondclassof implementationsis changed block. A changed block implementation

shares the physical copy of the data between the source and the target until the data is

written; this sharing can be at the level of a sector, a track, or conceivably some other

granularity (we refer to this unit as a record below). To allow the data to be shared some

form of table is used to determine where the actual copy of the data exists. When the

source and target are accessed this table is used to determine from where the data is to be
retrieved.

This table can be the directory that exists in virtual arrays such as log structured arrays

[12] or it can be some other mechanism that is used only for purposes of supporting a

point-in-time copy, such as a copy-on-write bitmap that tells whether or not a given

record has been copied. A changed block approach is easy to implement on completely

virtual systems, or other mechanisms, which use indirection for all accesses; however, it

is also possible to implement a changed block approach in more conventional systems.

When the data is written a changed block implementation will either manipulate pointers

in a directory or copy the written data. In either case, after the update the source and the

target no longer share a physical copy of the given record.

A changed block implementation requires setting up the table to keep track of what

records have been copied when the point-in-time copy is made; this obviously takes time

that is linear in the size of the data to be copied. However, since these tables can be no

more than a copy-on-write bitmap, this can be done very efficiently. One big benefit of

changed block implementations over split mirror implementations is that no advanced set

up is required prior to executing a point-in-time copy. Another feature of a changed

block implementation is that the amount of space required is a function only of the
amount of data modified.

A concurrent point-in-time copy is similar to a changed block implementation with one

significant difference. A concurrent implementation always physically copies the data.

Like a changed block solution, however, when the point-in-time copy is executed, no

data is physically copied. Instead, the concurrent solution sets up a table to keep track of

which data has been physically copied. It then physically copies the data in the

background, using the table to synchronously copy any records that are about to be
modified.

One other axis on which point-in-time copy solutions can be differentiated is whether or

not the target of the copy is a first class citizen, i.e., can the target be freely accessed or

are there limitations on the way it is used, e.g., no updates, only sequential reads, etc.

As discussed in the introduction point-in-time copies can be made either at the file

system level or at the storage subsystem level. The biggest benefit of performing the

copy at the storage subsystem level is that it can reduce the load on the server and on the

262

storagenetwork(assumingoneis beingused). Whenthe copy is made at the level of the

file system, all of the computation of the copy must be made on the file server; in

addition, whenever ph2ysical copies are required, the data must be transferred up through

the storage subsystem, over the storage network to the server and then back down the

same path. If the copy is made by the storage subsystem, we can totally avoid the

overhead on the storage network and on the host.

3. Point-in-Time Copy Today

Research on storage point-in-time copy techniques is extremely scarce. Since one of the

major uses of point-in-1 ime copy is as a building block for efficient backup, the literature

on backup techniques covers partially this topic [13]. In this section, we review some of

the major point-in-time solutions available in the market. In addition, while we focus on

disk storage subsystems, we describe two point-in-time copy techniques at the level of

the file system.

3.1 Split Mirror Solutions

EMC's TimeFinder [2114] and Hitachi's Shadowhnage [5] are two examples of split

mirror implementations. We describe TimeFinder's major characteristics. TimeFinder

allows creating mirrol images of standard devices. These mirrored images, called

Business Continuance Volumes (BCVs), may be later split and accessed independently.

BCV images are create d in the background and several copies of a standard device may

be created. BCVs can go through the following stages:

• Establish - a new E;CV device is established and, initially, contains no data.

• Isynch - the point-in-time where the BCV pair is synchronized with the standard

device.

Split - makes the BCV volume available to the host. The content of the BCV volume

is a point-in-time ,:opy of the standard device at the time the split command was

issued.

Re-establish - The volume is re-assigned as a mirror of the standard device. The

BCV volume is refreshed with any updates made to the standard device, and any

updates to the BCV after the split are discarded.

• Restore - Copies the contents of the BCV back to the standard device.

• Incremental restore- Discards all the changes made to the standard device since the

split occurred and copies updates made to the BCV device to the standard device.

The latest version of TimeFinder [14] introduces changed block capabilities: a new

instant split operation _tllows BCVs to become immediately available to the hosts. This is

achieved by copying tracks before they are modified in the standard device.

263

3.2 Log Structured Changed Block Solutions

IBM's RAMAC Virtual Array (RVA) [15][7] and StorageTek's Shared Virtual Array [8]

are major examples of changed block solutions that leverage the log structure data

structures for their point-in-time copy implementation. IBM's RVA represents a volume

using a set of tables that eventually point to the set of tracks that comprise the volume.

RVA also maintains a reference count for each track containing physical data. A

snapshot operation from a source to a target volume requires (1) decreasing the reference

count of the target tracks, (2) copying the "track" table from the source to the target and

(3) increasing the reference count of the source volume tracks. RVA's snapshot is both

efficient in time - requiring only to copy the track table of the source and updating the

track reference counts- and efficient in space - since no copy of the user data is

required.

3.3 File System Solutions

Many UNIX-like file systems have leveraged their inode, pointer-based data structures to

implement efficient snapshot capabilities. The Andrew File System [3] implements a

Clone operation that creates a frozen copy-on-write snapshot. Snapshots are read-only

and are traditionally used for backup purposes, to allow backing up a consistent point-in-

time snapshot, with minimal disruption of the activity on the production file system. In

addition, snapshots can be used for easy restore of deleted or corrupted files.

Network Appliance's filer [2] also implements a copy-on-write-based snapshot facility

[9] that creates on-line, read-only copies of the entire file system. It currently allows

administrator to create up to twenty snapshots of a file system. In order to support

snapshots, the free block data structure is extended to mark to which snapshots the block

belongs. A block might be returned to the "free pool" only after each bit, for each

snapshot is zero. Snapshot are created under the "-snapshot" directory. Users may

retrieve files from previous snapshots, and restore them using standard file system "copy"
commands.

Network Appliance has integrated its snapshot features with a SnapMirror/SnapRestore

capability. SnapMirror allows automated, consistent replication of file systems to remote

sites. It creates periodically a snapshot of the file system and then transfers the modified

blocks to the remote site. After a baseline transfer is complete, Snapmirror leverages the

snapshot bitmaps to identify which blocks need to be transferred to the remote site.

SnapRestore allows restoring a mirrored snapshot to the primary.

File system snapshots are very efficient operations, since they only require keeping

copies of modified or deleted files. However, since, not only the data, but also the

metadata is read-only, one cannot modify metadata attributes of files in snapshots. For

example, revoking access to a file from a user does not prevent him from accessing

(earlier versions of) the file in previous snapshots. In addition, when a copy is required,

the data must be transferred from the storage subsystem to the file system and back to the

storage subsystem.

264

4. ESS's FlashCopy Today

FlashCopy is an ESS Copy Services function, developed in our labs, which is a

concurrent class point-i_-time copy operation. It utilizes copy-on-write bitmap techniques

to maintain knowledge of which blocks of data have been a modified after the point-in-

time copy was created. Real storage equal in size to the source data is required on the

target volume. When a block of data on the source volume is modified, the previous

version of that data is copied to the target volume be_bre the new modification overwrites

it. An optional background copy task may be initiated to perform the physical copy of

the entire source volum,. • to the target volume.

FlashCopy, unlike a spl it mirror technique, provides instant availability for read and write

data on both the source and target volumes as soon as the invocation of the operation is

complete. It utilizes the ESS cache and fast write functionality to mask any performance

affects related to the [=oint-in-time copy which may be activated for a given volume.

FlashCopy operates on volumes for zSeries hosts and for volumes attached to open

systems hosts. When ilwoked from a zSeries, the host program can specify that only a

portion of the volume be copied. This is called a sparse volume. If portions of the volume

are not allocated or are catalogs or volume table of contents, these can be excluded from

the copy to the target md managed by the host software. An open systems volume is

copied in its entirety.

The most important pelformance metric related to tile creation of the point-in-time copy

is the elapsed time required for the invocation of the copy on one pair or multiple pairs of

volumes. During invocation, the application must maintain a consistent image of the data

across all volumes used for the application. The amount of time required can be

considered an applicat-on impact and must be minimized by the design of the copy

function.

When a FlashCopy is initiated, the source and target are entered into a relationship using

a bitmap table which r_ fiects the location of the point-in-time data - either on the source

volume or on the targe volume. While the relationship table is being created within the

ESS control unit, the two volumes are made unavailable to all customer access. The time

for this operation can vary considerably with the method of FlashCopy initiation. The

zSeries program DFSM Sdss [15] performs various steps prior to the relationship creation

period which elongates the initiation. DFSMSdss must read the Volume Table of

Contents (VTOC), perJbrm RACF security verifications, and then reserve the volumes

involved for data integrity purposes. Given this task overhead, the FlashCopy initiation

can take approximately 6 seconds for a 3 gigabyte volume. By contrast, the TSO

FlashCopy function and the ESS Specialist Command Line Invocation does not include

reading or verification steps and can take less than 2 seconds for the same relationship.

By performing the invocation for many volumes in parallel, the time to complete the set

of relationships is mucl" better than the summation of individual invocations.

265

of Flash
Copies
1

dsssmall
VTOC
6 sec

dsslarge
VTOC
8 sec

TSO

invoked

1.2 sec

256 48 sec 66 sec 18 sec

As can be seen from the table, the invocation time is a function of the number of volumes
in the total data collection and the amount of information on the volumes as reflected in

the VTOC.

Another important performance measurement is the effect on application response time

and the number of I/O operations that can be executed per second while a FlashCopy

relationship exists for a volume pair or number of volume pairs. Measurements were

made using 256 FlashCopy pairs while running a cache standard workload which show

less than 3% reduction in the I/O rate when the workload volumes are in a relationship

with the no background copy option selected. With the background copy option selected,
the rate reduction is about 7%.

The change to the workload response time is negligible when the no background copy is

specified. There is negligible response time increase when the background copy is

specified for 32 volumes or less in one control unit. With 256 volumes in background

copy mode, the response time rises doubles until the number of background copy tasks is

reduced by completing the copy for a pair of volumes.

5. The Future of Point-in-Time Copy

The world of data copies has improved significantly since the invention of the first

facilities that allowed a logical copy without requiring a physical copy. However, there

is still room for improvement. In the small, the improvements include improving the

performance of today's solutions to reduce even further the impact on the application for

creating a copy. In addition, it should be possible to provide greater flexibility in the

facilities provided by storage subsystems, allowing a greater degree of knowledge of the

logical structure of the data to flow down to the physical layer.

In the large, the greatest improvement may come from new storage architectures such as

object based storage. With an object based storage and the appropriate file system

architecture, it should be possible to completely bridge the gap between the logical

structure as seen by the file system and the physical structure provided by the storage

subsystem.

5.1 Improving Today's Point-in-time Copy

As fast as the execution of a point-in-time copy may be, until it is instantaneous, it will

never be fast enough. This is because as described in Section 2, while the command for

the point-in-time copy is executing, it may be necessary to limit application access to the

data being copied.

266

Thereare severalaspectsto improving the performanceof today's point-in-time copy
solutions. First, it is important to speedup the time required to ensure that the
componentperforming the copy has a copy of the data that is consistentwith the
application'sview of thedata. This includesensuringthat all datathat is in cachehas
beenwritten throught_,theappropriatelevel of the systemor at the very leastknowing
whatdataneedsto beretrievedfrom acache.

Second,thedatastructuresusedto managethecopyneedto besetup quickly. To some
degreethis is a problemthatis inherentlylinearin tile sizeof thedatato be "copied"; for
instance,a tablerecorcfingwhich datahasbeencopiedmustbe a size that is the same
orderof magnitudeastile sizeof thedata. However,evenhere,by intelligentlypreparing
the datastructuresit may be possibleto hide someor most of the overheadfrom the
application.

In additionto improvir_gperformance,we believethat point-in-time copysolutionswill
evolve to have more flexibility in terms of the allowing knowledgeof a file system's
logical structureto flow downto thestoragesubsystem.To a degreethis existstodayfor
mainframedatawith tl'_esupportfor makingpoint-in-timecopiesof individual datasets
[6][16]. However,mole work is requiredto providethis samefacility for partitions in a
way that isnot tied to aparticularlogicalvolumemanageror file system.

5.2 Point-in-time Copy and Object Based Storage

Object Based Storage e.g., [11]) provides the client (storage consumer) with a storage

abstraction closer to the client's view of the data than the conventional device view. In

conventional storage cievices the client perceives a device as a collection of storage

blocks (usually fixed length). Organizing this primitive storage into entities significant to

applications and managing all storage resources is delegated to client software (operating

system), sometimes in conjunction with a third party (a file server). Only through client

and/or file server sofiw are is the client able to attach significance to data. This classical

structure has two main disadvantages:

• it is hard to scale lo large volumes of data and large throughput since data servers

quickly become boltlenecks

• data management a storage level has no relation to content

Widely discussed in a,-ademia and now starting to happen in industrial laboratories, a

new form of storage access - Object Based Storage - changes the way storage is accessed

and managed.

Object Based Storage (OBS) relegates space management to the storage subsystem.

Instead of perceiving a volume as an amorphous collection of equally sized storage

blocks the storage cli,mt perceives now a volume as a collection of variable length

(possibly sparsely populated) objects and the mapping of those objects to device-blocks

is delegated to the storage controller.

267

Client accessto data is based on an object-handle (capability) established by a

management component in the network. Access to data is protected through the

capability and unmediated.

In addition to enable building highly scalable storage subsystems (as the access does not

have to go through a data server) Object Based Storage make access units (objects)

"visible" and manageable at storage subsystem level. The previously discussed copy

functions can now be performed based on policies pertinent to specific objects or classes

of objects.

In addition since the storage subsystem has complete control over device block location

information and internal object structure, management functions, such as point-in-time

copy or incremental point-in-time copy, can be made with minimal space (and time)

overhead and encompass any set of objects (not necessarily a volume or a large portion of

a volume). And although the examples that follow involve files it can easily be observed

that they might as well refer to database tables or any other type of storage object.

5.2.1 Point-in-time copy for a set of files

Point-in-time copy for a set of files in a file-system built using Object Based Storage

involves the following steps on a client/administrative system:

1. Lock the set of files

2. Copy the directory entries for the set of files

3. Request a point-in-time copy for the set of objects containing the files data from the

storage subsystem to be performed asynchronously

4. Release the locks

5. Wait for the point-in-time copy command to end

The storage subsystem will do the following:

1. Mark all the involved objects (their control structures) as copy-on-write

2. Return to the host an indication of "successful request"

3. Perform the request while accepting read/write operations from the host

It is easy to observe that given enough free space to accommodate host write operations

during the point-in-time copy generation, any number of point-in-time operations can be

performed simultaneously.

To perform such a point-in-time copy for a set of files using today's mechanisms, would

require that we give the control unit detailed knowledge of the way the file system lays

268

out files. Sinceon dhk layout differs betweenfile systems,separateimplementations
wouldbe requiredfor eachfile systemsupported.

6. Conclusions

We havedescribedthecurrentstateof the art of point-in-time copy operations, focusing

on the FlashCopy facility of IBM's ESS developed in our labs. Using FlashCopy as an

example, we have shown how today's point-in-time copy facilities can perform a

semantic copy of large quantities of data in essentially zero time.

While performance of loday's copy is orders of magnitude superior to the time required

to make a physical copy, there is still some room to improve performance. More

significantly we see that the future melding of block based and file based storage,

promised by facilities such as object based storage, will provide an opportunity for

storage subsystems to provide point-in-time copy for entities that are meaningful to the

end user, e.g., files, and not just entire or large portions of logical units.

Acknowledgements

FlashCopy would not exist today were it not for the diligent work of a large development

team led by Yoram Novick along with the support of the entire ESS development team.

References

[1] A Dictionary of St{,rage Networking TerminologT,
http ://www. snia. org/English/Resources/r)ictionary_FS .html

[2] Hutchinson, N., Manley, S., Federwisch, M., Harris, G., Hitz, D., Kleiman, S.,

O'Malley, S., "Logical vs. Physical File System Backup" Third Symposium on

Operating Systems Design and Implementation. 1999.

[3] Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M.,

Sidebotham, R., V_est, M., "Scale and Performance in a Distributed File

System", ACM Transactions on Computer Systems, Vol. 6, No. 1, February

1988, Pages 51-81

[4] EMC TimeFinder Product Description Guide, 1998, EMC Corporation,
http ://www. emc. com/products/product_pdfs/pdg/timefinder_pdg, pdf

[5] Hitachi ShadowImage, June 2001,
http ://www. hds. com/pdf/shadowimageR6, pdf

[6] Mellish, B., Blazek, V., Beyer, A., and Wolatka, R. Implementing ESS Copy
Services on UNIX and Windows NT/2000. Feb. 2001, IBM.

[7] McAuley, D., Pate, A., Black, I., Bueffel, V., Chana, B., Docherty, G.,

Leplaideur, D., Nel, W., IBM RAMAC Virtual Array, July 1997, IBM

269

[8]

[9]

[lO]

[11]

[12]

[13]

[14]

[15]

[16]

"StorageTek TM SnapShot Software"
http://www, storagetek, com/products/software/snapshot/

Brown, K., Katcher, J., Waiters, R., Watson, A., SnapMirror and SnapRestore:

Advances in Snapshot Technology,

http ://www. netapp, com/tech_library/3043, html, Network Apppliance,
Inc.

Gibson, G.A., R. Van Meter, "Network Attached Storage Architecture,"

Communications of the ACM, Vol. 43, No 11, Nov., 2000

"Object Based Storage Devices: A Command Set Proposal,"

http: //www. nsic. org/nasd/final, pdf Nov. 1999

Menon, Jai. "A performance comparison of RAID-5 and log-structured arrays'"

Proceedings of the Fourth IEEE International Symposium on High Performance

Distributed Computing, 1995. p. 167-178.

Chervenak, A., Vellanki, V., Kurmas, Z., "Protecting File Systems: A Survey of

Backup Techniques", Proceedings Joint NASA and IEEE Mass Storage

Conference, March 1998.

EMC TimeFinder, 2000, EMC Corporation,
http://www.emc.com/products/product_pdfs/ds/timefinder 1700-4.pdf

Pate, A., Vaia, C., Todd, J., and Aigner, H. Implementing DSMSdss SnapShot

and Virtual Concurrent Copy, June 1998, IBM

Blunden, M., Bergum, S., Dovidauskas J., and Vaia, C. Implementing ESS Copy
Services on S/390, Dec. 2000, IBM.

i Or tracks and volumes for zSeries; we focus on open systems.

270

Locating Logical Volumes in Large-Scale Networks

Mallik Mahalin_am, Christos Karamanolis, Magnus Karlsson, Zhichen Xu

Hewlett Packard Labs

1501 Page Mill Rd, Palo Alto CA 94304

{m mallik, christos, karlsson, zhichen }@hpl.hp.com

Abstract

Storage is increasingb becoming a commodity shared in global scale, either within the infra-

structure of large organizations or by outsourcing to Storage Service Providers. Storage re-
sources are managed and shared in the form of logical volumes; that is, virtual disks that aggre-

gate resources from _rultiple, distributed physical devices and storage area networks. Logical
volumes are dynamica ly assigned to servers according to a global resource utilio' model.

This paper focuses olt the problem of locating and accessing logical volumes in very large
scale. Our goal is to devise mechanisms that are least intrusive to the existing lnternet infra-

structure. Two methods are proposed, based on DNS name resolution and BGP routing, respec-

tively. The former is based on the current DNS protocols and infrastructure; the latter requires
extensions to the exist ng BGP protocols. The two approaches are evaluated by means of simu-

lations, based on realistic workloads and actual lnternet topology. It is shown that the simpler
and less intrusive DNS-based approach performs sufficiently well, for even small caches on the

clients.

1 Introduction

Storage Service Providers (SSP) such as ScaleEight [1] and StorageNetworks [2] pro-

vide network-based storage solutions for customers that wish to outsource some or all

of their data storage and its management. They provide a global storage infrastructure

that enables their ctstomers to create, manage and distribute large sets of data across

multiple geographic locations.

Clients access such a global storage service in one; of two ways. First, directly by means

of traditional file sy;tem APls, e.g., through NFS mount-points. These clients are typi-

cally hosts that execate application services for the organizations that outsource storage

to the SSP. Second, by means of Content Delivery Networks (CDNs) [3, 4], which rep-

licate certain types of the data (originating from the SSP) closer to the edge of the net-

work. We envision that in future storage services, the borderline between SSPs and

CDNs will be blurred, as content will be dynamically created and stored at the edge of

the network. The erlerging technologies for distributed application services [5, 6] and

peer-to-peer CDNs i17] point in that direction. Throughout this paper, we use the term
clients to refer to bo:h these classes of clients.

Typically, the infrastructure of an SSP consists of a pool of storage resources, such as

disks, disk arrays aad Storage Area Networks (SANs), as well as compute resources

(servers) for providing access to the storage. This infrastructure is physically distrib-

uted across multiple geographic locations. SSPs may own their own Data Centers, or

their resources may be hosted at lnternet Data Centers (IDCs), such as those of Exodus

[8] and Qwest [9]. Moreover, we anticipate that, in the future, storage service providers

271

will not necessarily own their own physical resources. Instead, their infrastructure will

be provided by on-demand aggregation of resources from multiple disparate data cen-

ters, following the principles of a resource utility model [10, 11].

Even today, the infrastructure of SSPs and big corporations consists of many, heteroge-

neous and distributed physical storage resources. In this context, logical volume man-

agers are used in order to simplify the management and facilitate the use of diverse re-

sources. Logical volumes provide an abstraction for aggregating storage resources

spread across multiple disks (that are attached to the same server or the same SAN) to

appear as a single virtual storage device [12]. Data is organized within the boundaries

of the logical volumes. Data on volumes are accessed through one or more servers that

mount that volume. The data may be organized in the form of a file system or a data-

base. To keep the discussion simple, in the rest of the paper, we will refer to data as
files.

Clients access a volume by going through the corresponding file server, which coordi-

nates all accesses via a file system API. When a client requests access to a file (per-

forms a lookup), a file-handle, which uniquely identifies the file in the system, is re-

turned back to the client. This file-handle contains a Volume Identifier (VID) that refers

to the logical volume where the file is physically stored [13, 14]. Files accessed by a

client may be spread across multiple logical volumes. Therefore, for every file access,

the client must resolve the location of a file server that "owns" the logical volume
where the file resides.

In a resource utility model, the mapping of logical volumes to physical resources and

their assignment to file servers can be dynamic. Therefore, a key problem is how to

provide efficient and scalable mechanisms for locating a logical volume and its custo-

dian file server. The system model we assume for our discussion is outlined in section

2. In section 3, we propose a mechanism by which file servers can locate the logical

volumes that they are responsible for. Sections 4 and 5 introduce two mechanisms for

resolving the identity of a server that provides access to a volume. The main idea be-

hind the proposed solutions is to exploit well-understood mechanisms, with proven

scalability in the Internet, and adapt them for locating volumes in very large scale. Our

aim is to use existing services (e.g., DNS), with no or minimal changes to the existing

infrastructure. The two approaches are evaluated in section 6, using simulation based

on both real and synthetic workloads, as well as real Internet topology information.

Section 7 discusses related work and section 8 concludes the paper.

2 System overview

The infrastructure of an SSP resembles any other network in the Internet. We assume it

is divided into a number of Zones, each with a unique identifier, Z-ID. Each Zone con-

sists of one or more Autonomous Systems (AS) and each Autonomous System consists

of a number of Autonomous System Regions (ASR). An ASR representative maintains

a database that contains information on the logical volumes within its region and their

assigned servers. By organizing the system this way, we uniquely identify any logical

volume by a Volume identifier (VID), using the convention "Volume-ID.ASR-ID.AS-
ID.Zone-ID".

272

File serverstypically retrievetheir logical volume assignmentby interactingwith an
ASRrepresentative.Thevolumeassignmentsmaybedynamicto accommodatesystem
reconfiguration,fluctuatingdemandor changingworkloads.Automatingthe resource
managementin suchenvironmentsis the focusof severalcurrentresearchprojects[10,
11,15].

Whena client requiresaccessto a file, it performsa lookup by sendinga lookup re-
questto the file serverthat hoststhe logical volumewheretheparentdirectory of the
file resides.The file server performs lookup locally on the parent directory and returns

the file handle corresponding to the file. Note, that the volume (and server) of the par-

ent directory, where the file handle is constructed, and the volume of the file itself may

not be the same, as it is the case in systems such as Archipelago [16] and DiFFS [14].

The file-handle contains a Volume Identoqer (VID) that refers to the logical volume

where the file is physically stored. In order for the clients to access the file, they must
resolve the VID and locate the file server that "owns" the corresponding logical vol-

ume.

3 Assignment of logical volumes to servers

When a file server comes online, it sends out a request identifying itself, asking for

logical volumes tha: it is responsible for. This functionality is implemented using the

DHCP protocol [17-. When an ASR representative within the vicinity of the file server

receives the request, it locates the list of logical volumes that the requestor is responsi-

ble for and responds back supplying the list to the server. The response contains the

configuration inforrlation of the logical volumes. For example, in an IP-based SAN,

the response may contain Logical Unit Numbers (LUN) and their corresponding target

IP addresses, along with other information such as whether a logical volume is stripped,

mirrored, etc. The assignment of logical volumes may be pre-conflgured via storage

management tools cr may be dynamically assigned by an ASR representative upon re-

ceiving the request. Once an assignment is made, the representative for the ASR up-

dates its database to reflect the new state of server-to-volume assignment. These as-

signments can be dxnamically changed to cater for various system conditions such as

file server utilizaticn, load balancing, locality, etc. Any reassignment of logical vol-

umes affects only tl'e database of a specific ASR and leaves the rest of the mapping in

the system intact.

In very large systems following the resource utility model, we cannot assume that file

servers can reach A':;R representative via DHCP. Two solutions can be applied in such

environments: 1) th, _ file server is pre-configured with a set of logical volumes; 2) the

file server is configared with the identity of an ASR representative (not necessarily of

its local ASR) which it should contact to retrieve its volume assignments.

4 Logical volume discovery by clients using DNS

In this approach, e_ch Zone, AS and ASR has one or more designated representatives,

which, in practice, are part of the existing DNS infrastructure (authoritative servers)

[18]. The root server of the SSP contains information on all zone representatives. Every

zone representative maintains a database with all the AS representatives within its zone.

273

In the same way, an AS representative maintains information about all ASR representa-
tives within that AS.

Zone representatives

Database

AS representatives

Database

ASR representatives

Database

<

/

, Volume Identifier (VID) Mapping Database

I.!.2.2 -> FSI

1
|/7.1.2¢2._FS_ /

Figure 1: VID resolution using DNS

For a client to access a file, it has to first retrieve a file handle via a lookup process. The

client then needs to locate the file server that corresponds to the Volume Identifier

(VID) in the file handle. The identity of the server is resolved by exploiting typical

DNS name resolution [18]. For example, when a client Ci receives a file handle that

contains VID 7.1.2.2, it constructs a fully qualified domain name

"Vol7.ASRl.AS2.Z2.root.myssp.com" based on the numerical VID contained in the

file handle and the root domain name of the SSP. The root domain name is obtained

during the file system mount time The client then resolves this (artificial) domain name

through a normal DNS resolution process, as depicted in Figure 1. This process does

not require any changes to the existing DNS infrastructure. However, the root server of

the SSP needs to be configured to respond to the domain suffix "Z2" by specifying the

authoritative representatives for that part of the domain suffix. When a client's requests

land at the representative for an ASR, the address of the file server that corresponds to

the VID is returned. Results of this query can be cached at the client for improved per-
formance.

Various optimizations are possible in order to speed up the resolution process. One

possibility is to have file servers resolve the logical volume mapping, cache the infor-

mation locally and return the mapping information when a file handle needs to be re-

turned back to the client. This cached information could significantly reduce the net-

work traffic especially when many clients reference the same logical volume. Cached

information can be kept loosely consistent with the actual mapping by performing peri-

odic checks. Also, resolution at the file server can be performed in an asynchronous

fashion to hide any extra delays. Invalid references can arise due to volume reassign-

274

ments or the non-av_ilability of file servers. In this case, clients resort back to the nor-

mal resolution proce_;s.

Clients can also contact a local DNS server and have that server perform the logical

volume to file server mapping. Typically, employing optimizations like this has proven

to produce higher cache hit ratio [19] in resolving domain names at the client.

5 Logical volume discovery using suffix-based routing

This section introduces an alternative approach for clients to retrieve the custodian file

server of logical volames, called Volume Identifier Routing Protocol (VIRP). Given a

VID, VIRP routes the request for VID resolution to the corresponding ASR representa-

tive taking the shortest ASR (or AS) path and returns the address of the corresponding

file server to the clieat.

VIRP is based on sttffix reachability that is similar to prefix-based routing performed

using BGP [20]. There are two variations of the protocol. In the first variation, each

ASR representative advertises itself to its neighboring VIRP routers. These advertise-

ments are propagated further to other VIRP routers. For a particular VIRP router, rout-

ing advertisement of an ASR representative indicates the shortest path towards that

ASR representative.

/

ASR4 /

Destination _
1 ASR 5

ASR2 ASR3 l

ASR 3 ASR 3 [

JASR 5 ASR 5

I

_ E--] ASR Representative

Ci

BGP Peer connectivity
off

__ C. C2, C_
1........ 4P

I ASRI

lAiR5 __

Clients

Routing path for resolving VID

Figure 2: Exaraple showing VIRP advertisements and routing VID resolution

For example, Figure 2 shows the routing table at VIRP router ASR4. The routing table

contains the next ho _ address for other ASR representatives following the shortest path.

As shown earlier in section 2, VID contains a Volume ID, an ASR ID, an AS ID, and a

Zone ID. Clients re:;olve VID by routing the request to the ASR representative corre-

sponding to the ASE part of the VID. The routed request takes the shortest path leading

to the target region. For example, a client C1 that wishes to resolve a VID that belongs

275

to ASR2 will first route to ASR4 and then take ASR3 as the following hop and route to

ASR2. In VIRP, the clients receive routing advertisements but do not perform any ad-
vertisements.

Alternatively, to reduce the size of VIRP routing tables, the advertisement can be per-

formed at the AS level. We introduce a representative for each AS to receive requests

from clients and direct them to ASR representatives. The AS representatives advertise

themselves as it was done in the previous case. Once a client request is routed to an AS

representative, the latter can forward the request to an ASR representative by perform-

ing a local lookup using the ASR-ID. The respective ASR representative responds to

the client with the address of the file server using the volume part of the VID. This

greatly reduces the number of entries kept in the routing tables but it requires defining

additional protocols for interaction between AS and ASR representatives. To give the

readers an idea of the savings on routing table size, assume that an ASR corresponds to

a network prefix on the Internet. There are 150K unique prefixes whereas the number
of AS on the Internet is on the order of 10K.

There are several ways to deploy this type of infrastructure. One way is to reuse the ex-

isting BGP routing infrastructure by adding new protocols. A more practical way is to

construct an overlay network to build this infrastructure [21]. Such an overlay network

can be constructed at application level for easy deployment.

6 Evaluation

The performance of the proposed DNS-based and BGP-based approaches is evaluated

by means of simulations. The simulation model is based on an Autonomous System

(AS) view of the actual Internet topology as of October 2001, and a real-world, glob-

ally distributed workload. We chose this to be a web workload for two reasons. First,

we believe that Content Delivery Networks will be one of the main applications of a

globally distributed file system, and secondly, it is one of the few workloads that today

have millions of globally distributed clients. The metric used to compare the two ap-

proaches is client perceived latency in resolving a VID.

6.1 Simulation Methodology

Our simulation model uses three sets of inputs in order to calculate the client perceived

latency for the approaches: An Internet topology, a set of volumes and their locations,

and finally the location of the clients and a list of chronologically ordered accesses to

these volumes. The input parameters are all summarized in Table 1.

The lnternet topology was generated using BGP routing table information obtained

from a leading ISP, Telestra.net [22], during October 2001. From these routing tables

an undirected graph is constructed, in which nodes represent Autonomous Systems and

edges represent their peering relationship. The generated graph contains approximately

13.000 nodes and 150.000 edges and we assume a uniform edge cost. The distance be-

tween two nodes in the topology is measured in number of AS-level network hops on

the shortest path between those nodes. The placement of the DNS servers in this Inter-

net topology is decided in the following way. We generated a list of nodes sorted in de-

scending order of their fan-out (number of nodes that are just one hop away from one

276

specific node). The ,ode that has the highest fan-out is selected to be the representative

for "root" and removed from the list. Next, the set of zone representatives are picked

from the top of the list and then are removed from the list. The AS and ASR representa-

tives are chosen in t[_e same way.

Table 1: The main parameters of the experimental platform and their corresponding val-
ues. The shaded parameters are the ones that we vary in the experiments,

Parafneter Value

Topology Distribution Part of real lnternet

Number 1 20,_0or 80,000,

Volumes DNS nodes 4/10/5/100 (Z/AS/ASR/Volumes) or 4/40/5/100

Objects

Clients

Number

Distr: bution

VID access pattern

5,400 Client clusters

According to real AS location

WorldCup98 or Random

The object refercnc:s were obtained from web logs of the World Cup Soccer 1998

event [23]. The logs contain references to nearly 90K unique files. These files are

mapped on 20K and 80K volumes, respectively for the two scenarios. While clearly the

World Cup site wotdd not in reality be located on this many volumes, a client would

not access solely one site. Instead a client would be accessing many different volumes

of various sites. Ou" client workload can thus bc seen to represent a widely scattered

surfing pattern that is close to a worst-case scenario for the DNS approach. The place-

ment of objects to xolumes is done in two ways: sequential and random. For each of

these algorithms, N files (where N = unique files / no of nodes) need to be placed on

each volume. For the sequential algorithm, the first N unique files encountered in the

web log are placed on node 1.1.1.1. The following N unique files are then placed on

node 2.1.1.1, and so on. As more frequently accessed files tend to show up earlier in the

web log, this algorithm will place popular files closer to each other. The random algo-

rithm, on the other hand, places the first N files encountered in the web log on a ran-

dom node, the next N files on another random node, and so on.

The clients' locatio_ts and access patterns were also obtained from the 98 World Cup

logs. These contain accesses made by roughly 2.6 million clients over the course of 90

days (includes accesses made 30 days prior and 30 days after the event). To be able to

assign these clients to the AS node they actually resides on in reality, we developed a

program that converts IP address of a client to the corresponding AS ID. This clustering

generated about 5.4K unique client clusters that are located in the same number of

unique ASs.

277

We use two different client access traces to evaluate the proposed schemes: World-

Cup98 and random. The former is taken straight from the client accesses of the World

Cup log; the latter is a uniformly random VID accesses. In the World Cup log, all cli-

ents in one AS access, on the average, 1K unique objects, while in the random one, the

simulation is terminated after 2K unique objects are referenced by each AS.

To measure the client perceived latency, 20% of the ASs were randomly chosen and

used in the simulations. They represent 500K clients generating close to 20% of the to-

tal client accesses. For each AS, a list of objects that the clients in that AS accessed is

generated. In our model, every server (DNS server or VIRP router) that is queried adds

to the client perceived latency. We express the client perceived latency in terms of the

number of AS hops involved. This has been shown to be a fair measure of latency [24].

Network contention is not taken under consideration. For the simulation, we have used

simple LRU caching at the clients to store the resolved VIDs. The impact of the size of

this cache and all other shaded parameters in Table 1 are examined in the next section.

6.2 Performance Results

The initial intuition was that the DNS approach should have a higher client perceived

latency than the VIRP approaches, when the VID lookup cache size is small and/or

when the locality of VID lookups is poor. In this section, we will investigate how much

locality the DNS approach needs in order to be comparable to the VIRP approaches,

and provide a rough estimate on how many VID lookups need to be cached at each cli-
ent for this to be achieved.

o>" 50000
E
@}

40000

•_ 8" 30000
(,f)

" < 20000

0 10000

< 0

t l
40000

-ASR _

._ _ 30000

_ 20oo0
_- 10000

_3

>= o
< o oo ,,_ oo

Clientcache size (#of entries)
Clientcache size (#of entries)

(a) Seouential obiect distribution (b) Random obiect distribution

Figure 3: Results for the DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes:
20,000. Number of objects: 90,000. Client access pattern: WorldCup98.

Figure 3a shows the results for the DNS, VIRP-ASR and VIRP-AS approaches using

sequential object distribution. In the figure, the x-axis represents the various client

cache sizes and the y-axis represents the average client perceived latency due to the

VID lookup process. VIRP-ASR has the lowest client perceived latency as it requires

only one lookup message and it traverses the shortest path between the client and the

server. For VIRP-AS, there is a potential for one more message, thus the slightly worse

278

performance. The 1rost interesting point in this graph is that the DNS approach per-
forms well even for small client cache sizes. For the sequential object distribution of

Figure 3a it starts tc perform well at 32 entries, but for the random case in Figure 3b,

this point is only increased to 256 entries. For a straightforward implementation of the

client cache, this translates to a modest 1KB and 8KB of memory space, respectively.

50000 _ 50000

[

--_ 40000 - ASR -- --
ASR

 o,o0oo\ o:,ooo0_ 20000 _,_ :.,oooo
-=--- _ g _oooo

S 10000_'_:_ s
0

<
o _ _ _o _o 04 _ oo _ _ 04 _ ;, _ "_

04

Client cache size (# of entries)
Qient { ache size (# of entries)

(a) Sequential objecl distribution (b) Random object distribution

Figure 4: Results for DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes:
80,000. Number of objects: 90,000. Client access pattern: WorldCup98.

Figure 4 shows the effects of what happens if the number of volumes is increased four

times to 80,000 volames. As the locality will be poorer than before, we would expect

the DNS approach _o perform even worse. But lbr the sequential object distribution it

hardly matters for clients with a cache, as the DNS approach performs as well as be-

fore. However, for the random object distribution the cache size required for DNS to

become comparable to VIRP-AS is larger. It is now around 2K entries, translating into

64KB of memory s[,ace.

5OOOO _ 5OOOO
c

40000 ,_I,,,u*DNS _ 40000

-- _ _VIRP-ASR _
,,_,_-,-- V IRP - AS >

_ _ 30000 _ ,_ _ 30000

_ 2oooo_:::__ _ _ 2oooo_= _ _=loooo
loooo

d_ 0
< 0 _: o

04

Client cache size (# of entries)
Client ,;ache size (# of entries)

l
,,_@,,,_ V IRP - AS

(a) Sequential obj,'ct distribution (b) Random object distribution

Figure 5: Results for DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes:
20.000. Number of objects: 1 million. Client access pattern: Random.

The last set of experiments was designed to stress the approaches even further to see

how they hold up lbr a random client access pattern with a larger number of objects.

279

Few workloads will have access patterns that are truly random, however, this will pro-

vide us with a worst-case scenario for the approaches. Figure 5 and 6 show the results

for the random client-access pattern when the number of objects is 1 million. It can be

seen that the VIRP approaches perform better than the DNS approach for small sizes of

caches, but their performance remains more or less unaffected by the client cache size.

50000
¢.-

40000

•_ o 30000
_ 20000

_5 10000
6_
> 0<

0

_" 50000

-_ 40000

30000

_ 20000
"E =
.__ _-- 10000

6_ 0
>

_ _, o _ _ _ o o

Client cache size (# of entries)Client cache size (# of entries)

(a) Sequential object distribution (b) Random object distribution

Figure 6: Results for DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes:
80.000. Number of objects: 1 million. Client access pattern: Random

This is due to the random accesses to volumes. There is little reuse of VIDs as the

lookups are completely random, thus there is also little use of the client cache for stor-

ing individual VID lookups. However, for the DNS approach there will still be access

locality for the entries that store the zone, AS and ASR lookups as there are far lower

number of these in the system than volumes. This explains why DNS benefits from a

larger cache but not the VIRP approaches for this experiment. Thus, even for modest

cache sizes, the performance of the DNS approach is comparable to that of VIRP.

6.3 Summary of simulation results

Our simulation shows that VIRP with ASR level aggregation outperforms all other ap-

proaches we compared against. The drawback with the VIRP approaches is that they

require protocol modifications to the existing routing infrastructure. The DNS ap-

proach, on the other hand, can be deployed on existing infrastructure. Its performance

is comparable to VIRP for reasonable client cache sizes even when the locality is poor.

For reasonable cache sizes, the type of the object distribution has lesser effect on the

client perceived latency. In general, we believe that the deployment of the DNS ap-

proach is preferable as its performance is comparable to the VIRP approaches, while
using existing infrastructure.

7 Related Work

Existing distributed storage systems, such as AFS [13, 14], are designed for deploy-

ment in campus environments. These systems maintain a volume location database

(VLDB) to track the servers in the system where volumes reside. For example, AFS

maintains a VLDB for every "cell" of the system. The VLDB is typically replicated on

280

two or more Volume Location Servers, for availability reasons. An AFS client within a

cell is manually configured with a list of Volume Location Servers that it can contact to

resolve the volume location. This is not a feasible choice for large-scale geographically

dispersed networks such as the Internet. Also, AFS does not provide any mechanisms

by whichfile servers can locate the logical volumes they are assigned to; this informa-

tion is hard-wired in the servers' configuration.

Volume managers such as that of Veritas [25],[26] and storage virtualization systems

[27] aggregate multiple, disparate physical storage resources using the volume abstrac-

tion. These solutions are applicable to small-scale systems, a single SAN and a single

data center. Neither they provide service for hosts in the network to discover their as-

signments nor they ailow clients to resolve the owners of logical volumes.

Techniques used by -3SPs such as Scale8 [1] are not published. Karamanolis et al. [14]

describe mechanism,_; by which a file server keeps limited information about the peers

that the logical volumes under its custody have references to. Their proposal is primar-

ily an optimization o f our DNS approach, where caching is used at the file server.

8 Conclusion

Storage is increasingly becoming a commodity resource shared in global scale. The

emerging business model of outsourcing storage (or its management) to third-party ser-

vice providers ampli ties this trend. In this context, storage resources are virtualized and

shared by means of _ogical volumes. This paper addresses the problem of locating and

accessing logical volumes in global infrastructures, as those of Storage Service Provid-

ers or large corporations.

The paper briefly describes ways to assign computational resources (servers) to vol-

umes and how this raapping is performed in various system models. We then focus on

mechanisms for clieats to locate and access logical volumes, in a very large, dynamic

infrastructure. That is, locate the servers that provide access to specific volumes. In en-

vironments of the scale and volatility required in a "resource economy", a centralized

volume location database does not provide a satisfactory solution. First, it does not

scale sufficiently (e.g., for tens of thousands of volumes); second, we cannot expect a

centralized "knowledge" of the entire system's configuration.

The motivation for the work presented in this paper was to investigate solutions that are

based on well-unde'stood and provably scalable mechanisms. In that spirit, two ap-

proaches are proposed to address the problem. The first is based on existing DNS infra-

structure and protocols to resolve hierarchical volume identifiers. The second proposes

extensions to existirg BGP routing protocols to efficiently locate host servers of vol-

umes.

Our initial assertion was that the BGP-based approach would perform better than the

DNS approach. However, experimental results based on simulations indicate that even

for modest volume-id caching on the clients, the benefits of BGP are negligible. More-

over, the DNS apprcach is based completely on existing protocols and it is not intrusive

to the existing infrastructure. So, its deployment would be straightforward. On the other

hand, the BGP appcoach requires extensions to existing protocols and routing table

281

management, making it much harder to be deployed in a real environment. The latter is

not justified by the marginal performance benefits this approach offers.

9 References

[1] ScaleEight, http://www.scale8.corn/.

[2] StorageNetworks, http://www.storagenetworks.corn/.

[3] Akamai, http://www.akamai.com.

[4] Digitallsland, http://www.digitalisland.com.

[5] Ejasent, http://www.ejasent.com.

[6] Zembu, http://www.zembu.com.

[7] J. Kangasharju, J. W. Roberts, and K. W. Ross, "Object Replication Strategies in Content

Distribution Networks," presented at 6th Web Caching and Content Distribution Work-
shop, Bostori, MA, USA, 2001.

[8] Exodus, http://www.exodus.com.

[9] Qwest, http://www.qwest.com.

[10] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krishnakumar, D. P.

Pazel, J. Pershing, and B. Rochwerger., "Oceano - SLA Based Management of a Comput-

ing Utility," presented at Proceedings of the 7th IFIP/IEEE International Symposium on
Integrated Network Management, 2001.

J. Wilkes, J. Janakiraman, P. Goldsack, L. Russell, S. Singhal, and A. Thomas, "Eos - The

Dawn Of The Resource Economy," presented at HotOS-VIII Workshop, Schloss Elmau,
Germany, 2001.

D. Teigland and H. Mauelshagen, "Volume Managers in Linux," presented at FREENIX
Track: 2001 USENIX Annual Technical Conference, Boston, Massachusetts, USA, 2001.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and M.

West, "Scale and Performance in a Distributed File System," ACM Transactions on Com-
puter Systems, vol. 6, pp. 51-81, 1988.

C. Karamanolis, L. Liu, M. Mahalingam, D. Muntz, and Z. Zhang, "An Architecture for
Scalable and Manageable File Services," Hewlett-Packard Labs, Palo Alto, Technical Re-

port HPL-2001 - 173, July 2001.

IBM, "Autonomic computing," : http://www.research.ibm.com/autonomic.

M. Ji, E. W. Felten, R. Wang, and J. P. Singh, "Archipelago: An Island-Based File System
for Highly Available and Scalable Internet Services," presented at 4th USENIX Windows

Systems Symposium, 2000.

DHCP, http://www.dhcp.org.

DNS, http://www.dns.net/dnsrd/.

E. Sit, "Study of caching in the Internet Domain Name System," Massachusetts Institute
of Technology, May 2000., 2000.

Y. Rekhter, T. Li, and M. 1995, "A Border Gateway Protocol 4 (BGP-4) - RFC 1771 ," in

Request for Comments: 1771, 1995.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[2O]

282

[21] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz., "Bayeux: An
Architecture for _calable and Fault-tolerant WideArea Data Dissemination," presented at

In Proc. of the Eleventh International Workshop on Network and Operating System Sup-

port for Digital Audio and Video (NOSSDAV 2001), 2001.

[22] Telstra, "Raw BG P Data," http://kahuna.telstra.net/bgp2.

[23] Worldcup98, "W.)rldcup98 soccer event - Web logs," :

http://ita.ee.lbl.gc v/html/contrib/WorldCup.html.

[24] P. Radoslavov, R Govindan, and D. Estrin, "Topology-Informed Internet Replica Place-

ment," presented at 6th Web Caching and Content Distribution Workshop, Boston, MA,
USA, 2001.

[25] VERITAS, "Veritas Volume Manager," http://www.veritas.com.

[26] M. Hasenstein, '"the Logical Volume Manager (I,VM),"

http://www.sistin a.com/lvm_whitepaper.pdf.

[27] StorageApps, "SANLink," http://www.hp.corn/products 1/storage/san/sanlink/index.html.

283

Building a Massive, Distributed Storage Infrastructure at Indiana
University

Anurag Shankar, Gerry Bernbom
University Information Technology Services

Indiana University
2711 East Tenth Street

Bloomington IN 47408

ashankar, bernbom@Indiana.Edu
tel: +1-812-855-9255

fax: +1-812-855-8299

Abstract

Anticipating an onslaught of data in research, administrative, and academic computing,

Indiana University (IU_ undertook in 1998 the ambitious task of architecting a massive,

distributed storage infi'astructure to meet its long-term storage needs. The task, now

nearly complete, has resulted in the institution of the High Performance Storage System

(HPSS), a hierarchical _torage management (HSM) system, augmented by the Distributed

Computing Environment Distributed File System (DCE DFS) acting both as a file system

front end to HPSS and as a common file system (CFS) for IU campuses. Using

gateways, IU's distribJted storage system today currently offers a user on its eight

geographically distributed campuses a capacity for securely storing and accessing nearly

200 Terabytes of data from any networked (Windows, Mac, or Unix/Linux) desktop

equipped with a web bl owser.

HSM systems such as HPSS have traditionally been used by high-end users at large

research labs (for exarrple Los Alamos, Livermore, Sandia, Brookhaven National Labs in

the U.S. and at CERN in Europe), at supercomputer centers (for example the San Diego

Supercomputer Center), and at government agencies such as NASA. IU's installation is

unique in two respects. It is the first production HPSS that is geographically distributed

over a wide area network (WAN). Second, we have made available a high-end storage

system in an academic, setting not only to traditional, high-performance research users

(for example astronomers, physicists, chemists, etc.), but also more generally (to users in

economics, fine arts, apparel design, music, libraries, life sciences, etc.).

1 Re-centralization of Storage

Why build a centralized data storage system when typical personal computer hard disks

today offer tens of gigabytes of storage at a very low (acquisition) cost? While it is

certainly true that the availability of cheap, abundant personal storage capacity in the

early nineties started a trend toward de-centralization of storage (from a highly

centralized mainframe era), this trend is slowing. Researchers on university campuses a

decade ago found to their delight that, for the most part, they were able to acquire

(through grants) the resources necessary to store their data locally, on personal

workstations or on servers in their offices or in departments. However, their initial

enthusiasm soon dissipated when the high, after-purchase cost and effort of ensuring the

integrity, protection, aid long-term storage of data became apparent. As hard disk drive

sizes have swelled to gigabytes and then to tens of gigabytes, backups have become

increasingly costly, ,_ven painful. Also, enterprise-wide, the need for protecting

285

institutional intellectual assets (in the form of research and other data created by users)

has grown progressively stronger over the past decade, forcing many institutions to

reconsider centralizing data storage.

2 Infrastructure Choices

The design of a storage infrastructure ultimately depends on a number of factors, chief

among which are a) the amount of data to be stored, b) user data access patterns, and c)

the available budget. With disk prices continuing their free fall, the storage industry

seems to have agreed on storage area networks (SANs) to provide redundantly configured

disk-based storage. However, SANs or alternatives that utilize spinning disks alone are

simply not cost effective in building petabyte class data repositories at the present time.

This leaves us with tapes and with HSM technology. The largest data repositories in the

world are thus built using HSM systems. The tape to disk price ratio per megabyte of

storage (especially at the high end) still favors tape over disk.

In a traditional HSM system, data bits are migrated seamlessly (from a user's perspective)

from finely tuned, fast but (relatively) small disk caches (ours is a TB) to massive tape

libraries (again, ours offers 200TB) when unused for a period of time. Metadata resides

on disk forever (and is backed up carefully and redundantly). The user pays a price for

having easy access to terabytes of data in the form of tens of seconds to possibly minutes-

long delay in retrieving data bits that have migrated to tape. However, this appears to be

acceptable for the majority of academic users who are happy to have access to massive

storage capacities normally outside the scope of their individual or departmental budgets.

Armed with this information, we began looking for a HSM solution that provided a)

long-term vendor viability, b) excellent hardware and software support, c) scalable

performance, d) ease of access (preferably via a file system), and e) the ability to

distribute software and hardware components geographically. At the conclusion of our

request for proposal (RFP) process, only one contender remained, namely the High

Performance Storage System. The HPSS[1] is the result of a fruitful collaboration

between a number of government labs, academia, and IBM. It is not a vended solution in

the usual sense; one pays instead a membership fee to join the HPSS collaboration. Each

member gains access to the source code and is free to modify it within the mechanisms

provided by the collaboration. Excellent software support is also included. Another

attractive feature of HPSS is its ability to present a file system interface to data stored on

tapes via DCE DFS[2], a distributed, scalable and secure file system.

At the high end, campus projects needing massive data storage at IU included candidates

such as next generation high-energy physics experiments, with the potential to generate

petabytes of data each year. With possible analysis times extending to decades, protection

against software and hardware obsolescence is paramount. We felt that HPSS fit these

needs and our environment well, by giving us long-term control over our destiny. [HPSS

is also the HSM system of choice at some of the world's largest data repositories (for

example SDSC, Brookhaven National Labs, CERN, etc.).]

286

Finally, while a tape-besedsystemis ideal for archiving largefiles (tapesperformbest
when streaming),manycampususersneededpersistent,disk-basedstorageaswell. In
the past,thisneedwasmet(thoughinadequately)by theNovell Netwarefile system.By
1999 however, the future of Novell itself was in questionand the existing Novell
infrastructurewas in w'gent need of repair or replacement. With DCE DFS software

already installed for HPSS purposes, it was natural to use it in lieu ofNovell. DCE DFS

is one of the most highly scalable and distributed file systems in use currently in the

industry, to deliver high-end, secure file service. However, since DCE DFS clients are

available only for a n_mber of Unix flavors and for Windows NT4, it was clear that

appropriate gateway selvers would be needed to extend DCE DFS to the pervasive base

of Windows and Mac desktops and servers on campus.

3 Building IU's Distributed Storage System

Our service design included campus users (using their personal workstations or

departmental servers c,r our supercomputers) who either required massive, archival

storage and/or who needed traditional, disk-based storage. A major design goal for us

was also to provide storage ubiquitous/y, either via the web or via a file system front-end.

Though these methods do not provide the highest performance, they were targeted for a

non-savvy computer user due to the simplicity of use.

The majority of our users were located on two of IU's eight campuses, namely IU

Bloomington (IUB) an:l IU-Purdue University at Indianapolis (IUPUI), located around

fifty miles apart in central/south-central Indiana. Since the intercampus bandwidth

(45Mbps) was insufficient to move massive amounts of data between campuses, we

decided to experiment distributing IU's HPSS hardware and software across the two

campuses. While the metadata engine remained at IUB, the actual user data was to reside

where the user was located physically, either at IUB or at IUPUI. The idea was to use the

intercampus link efficimtly, to carry metadata traffic only. Users were to access their

data over their local LAN at each campus via third party transfers. Extensive tests in

partnership with IBM validated the idea and the experiment transformed into the first

production instance of a remote HPSS mover at IUPUI in late 2000.

The file system front-,md to HPSS is configured via "migrating" DFS servers. Data

placed into HPSS via I)FS arrives first in the DFS server disk caches, and later migrates

to HPSS disk caches via a bi-directional DFS-HPSS link. The migrating DFS is thus a

dedicated, external subsystem to HPSS. Static (i.e. non-migrating) DFS was also

configured using separate DFS servers, with no link to HPSS, to provide the "Common

File System" (CFS) service to the masses (directly, via DFS clients, and via SMB,

Appleshare IP, and web gateways). Security for both HPSS and for CFS is provided

through DCE (based or Kerberos 5).

We configured our cove HPSS on a dedicated IBM RS/6000 SP located at IUB. This

allows the eleven PowerPC "Silver" thin and wide SP nodes (which run core HPSS

servers, disk/tape movers and migrating DFS servers) to communicate over the IBM SP

switch at 130MB/s. Oar supercomputer (another IBM SP) users are able to transfer data

to/from HPSS using an ASCEND router at better than 100MB/s. A terabyte of IBM's

287

serial storage array (SSA) disk attachedto the eleven nodes forms the HPSS and

migrating DFS disk caches. We use IBM's Magstar (3590E) tape drives in an IBM 3494

tape library and Storage Technology Corporation's 9840 "Eagle" tape drives in a STK

9310 tape library to store HPSS data at IUB. Remote HPSS disk and tape movers and a

DFS server are configured on an IBM H70 server at IUPUI in Indianapolis. We have

roughly I TB of UltraSCSI RAID5 disk configured on the H70 as HPSS and migrating

DFS disk caches. A number of IBM's Magstar drives inside an IBM 3494 tape library
are SCSI-attached to the H70 at IUPUI.

HPSS is accessed in a high-performance mode via especially written Unix clients or more

easily via FTP, DFS or via the web. We currently have around a thousand users

distributed across various IU campuses, with roughly 55TB of data stored in HPSS.

IU's non-migrating DFS (or CFS) runs at IUB on several IBM's low-end B50 servers

with IBM's UltraSCSI RAID5 arrays. Five Sun E220R servers run Samba[3],

Netatalk[4], and Apache-SSL[5] servers which allow Win9x, Mac, and Linux users to

access DFS from any networked desktop. The gateways are accessed by users as a

single, round-robin DNS name. User authentication occurs securely (via modifications to

Samba, Netatalk, and Apache server code[6]) directly against DCE. This allows no name

space information to be maintained on the gateways, thus helping load balance and scale

the service up as appropriate, without user impact. The non-migrating DFS servers and

the gateways together form our CFS environment which is available to all campus users,

either as a mapped drive under Windows, an an Appleshare IP volume on Macs, via

smbmount or a native DFS client under Unix (or smbfs under Linux), and via the web.

We are serving roughly 25,000 CFS customers currently with 250GB of data stored and

backed up regularly.

4 Future

We are currently working in partnership with IBM to investigate developing an interface

between IBM's high-performance general parallel file system (GPFS) and HPSS. This

could enable high-speed, parallel, file system based data transfers between Linux clusters

and HPSS (these clusters are currently served largely via low-performance NFS). We are

also expanding the HPSS infrastructure at our Indianapolis campus (to nearly 400TB
capacity) to support life sciences research and will start tests soon thereafter to mirror all

HPSS data in real time across i-light[7], a newly installed high-speed optical fiber

infrastructure between IUB and IUPUI. This should provide us with better protection

against a disaster at either site. Finally, CFS is being extended to the IUPUI campus and

will replace the local Novell infrastructure during 2002.

5 Conclusions

Indiana University is one of the few academic institutions to successfully anticipate and

to build an ambitious infrastructure to provide massive data storage to its users. Using

HPSS, a highly scalable and distributed hierarchical storage management system, along

with DCE DFS and SMB, AppleShare IP and web gateways, a campus user at IU can

store and access terabytes of data from their desktops. We have also found that it is

288

possible to implement and to offer a high-end storage system to the masses, with

significant cost savings over the long run,

We are happy to share our knowledge and experiences with anyone who is interested.[8]

References

[1] Information about the High Performance Storage System (HPSS) is available at the

website http://www.clearlake.ibm.com/hpss/.

[2] IBM's DCE website: http://www.ibm.com/software/network/dce/. IBM's Transarc

Labs DCE/DFS w_;bsite: http://www.transarc.ibm.com/Product/.

[3] Samba project website: http://www.samba.org/.

[4] Netatalk project website: http://www.umich.edu/-rsug/netatalk/.

[5] Apache project wcbsite: http://www.apache.org/.

[6] Paul Henson's mods for Samba/Netatalk/Apache are available at the URL

http://www.intram,_t.csupomona.edu/-hensordwww/projects/.

[7] Indiana's high-speed research network website: http://www.i-light.iupui.edu/.

[8] Information about IU's distributed storage services is available at the URL

http://storage.iu.edu/. Our distributed storage services group website address is

http://www.indiana.edu/-dssg/.

289

High-density holographic data storage

with random encoded reference beam

Vladimir B. Markov

MetroLaser, Inc.

18010 Skypark Circle, Suite 100
Irvine CA 92614

vmarkov@metrolaserinc.com
tel: +1-949-553-0688

fax: + 1-949-553-0495

Abstract

Holographic technique offers high-density data storage with parallel access and high

throughput. Several methods exist for data multiplexing based on the fundamental

principle of volume hologram Bragg selectivity. We recently demonstrated that spatial

shift selectivity associated with a random (amplitude-phase) encoding of the reference

beam is an alternative method for high-density, high capacity data multiplexing. In this

report we show some characteristics of the random encoded reference beam hologram

selectivity _.

1 Introduction

Volume holographic memory allows for high throughput data storage and retrieval.

Different techniques fo data multiplexing have been explored, including those based on

angular [2] and spectral [3] selectivity of volume holography, spatial encoding of the

reference beam [4] or a combination of these methods [5]. The combination of reference

beam phase encoding with spatial-shift multiplexing was shown to be an efficient

approach for high-density holographic information storage [6,7]. The correlation effects

at volume hologram l ecording and reconstruction with random encoded (speckled)

reference beam came out as the part of the analysis of the holographic laser beam

corrector [8]. A simil_r technique using a reference beam comprised of many plane

waves (or a spherical wave) was suggested and experimentally demonstrated [9]. In this

report some characteristics of volume hologram with random-encoded reference (RER)
beam are discussed.

2 Theoretical Analysis

In our analysis we consider a volume hologram recorded by a plane wave signal beam

So(r) and a RER-beam, Ro(r), with a divergence 50sl,. By intersecting at an angle 0o these

two beams form a hologram with average grating spacing A = L/sin(Oo), assuming an

incidence angle 0Ro = 0. In the first Born approximation, the diffracted beam amplitude

S(r), when reconstructed with RER-beam different from the recording one i.e. R(r) ¢

Ro(r), can be described as [10]:

,) exp[iko (r- r')]d3r, '
S(r) = k_, IJ'i (r')Rtr'v 4n:lr- r'[(1)

Here 6e(r)ocSo(r)R_(r)is the recording media permittivity modulation and V is the

volume of the holograzn with thickness T. Eq. (1) is valid if T >> L/(_50sp) 2, i.e. exceeds

the longitudinal speckle size.

291

We introduce now the normalized diffracted beam intensity IDN(A) as the parameter to

describe the selectivity properties of RER-beam hologram:

T I._I+_ I _] 2/T +"IDN(Ai)- ID(A-L) -- I exp I J]Po(q)12×exp - _X± d2qdz 2×o _ J]Po(_)]2d2q. (2)
ID(A_=0) 0 [_ Udh 14

Here the measured diffracted beam intensity 1.oo _ , -

ID(A) is normalized by its peak value at zero

shift ID(A_-0).

It follows from Eqn. (2) that any spatial

mismatch between the hologram and

reconstructing beam R(r) should result in a

decline of the diffracted beam intensity.

Figure 1 shows the fall-off in IDN(A_L) that

occurs for lateral shift A±. This figure for

comparison includes also dependence

IDN(A±) if calculated from a standard

correlation function ICoR(A±) from the

statistical analysis of the speckle pattern.

Comparison of these two curves clearly

illustrates the impact of the spatial (volume)

beam hologram.

• f I i

Zcz 0.80 _k.
0.60

0.40
z [DN(&) _.

0.00 I .- _-.
0.00 2.00 4.00 6.00

Shift A.j_, _tm

Figure 1. Diffraction beam intensity IDN(A) as a

function of lateral A± shift.

interaction on shift selectivity of the RER-

3 Experimental Study

For experimental verification the RER-beam holograms were recorded in 2.3-mm-thick

Fe:LiNbO3 crystal. In a first set of the experiments the crystal was set onto an XY

computer controlled positioning table (shift accuracy 0.025 lam in X-Y plane). A 1 cm

diameter CW argon laser beam (X = 5 t 5 nm, P = 40 mW/cm 2) was used as the coherent

light source for hologram recording. The laser beam scattered by the ground glass

diffuser is then picked up by a large aperture lens (f# -- 1.4(forming a subjective speckle

pattern in the recording plane. By changing the relative spatial position of the recording

scheme elements allows for simple modification of average lateral speckle size <o±>.

The RER-beam intersected with the plane wave signal beam at an angle of 0o -- 30 ° in air

(0Ro = 0 ° and 0So = 30°).

The diffraction efficiency of the hologram in its original position (A±= 0) was

approximately 10 3. After the hologram was recorded, a lateral shift A Lwas introduced to

evaluate the sensitivity of the reconstruction beam intensity upon lateral shift. A typical

example of such operation is shown in Figure 2 for two orthogonal in plane (X-Y) shift

direction (a) and for several values of the speckle size <O_L>. The solid line in Figure 2

shows the behavior for the angular selectivity that would operate the diffracted beam

intensity at identical conditions. Following data from Figure 2 the parameter of shift

selectivity can be introduced for RER-beam hologram by analogy with angular selectivity

of the plane wave hologram. It is evident also that speckle-shift selectivity has a very

smooth character and contrary to the angular Bragg selectivity has no side-lobs in course

292

of displacement.

-g

Z

1..,

z
[.-

z

<

[-

i .0001

0.I00

0010

1.00:

0.80

0.60

0.40

0.20

0.00
0.0

0.001 I I
o.oo 1oo X-SHIFT (pro)

" ' I ' I ' I ' I '|

pm
_ _ [<_I > ~ 12.0

_ / O <el> ~ 8.01am" _OD\ _ <el> ~ 6.0 Flm

$ \ \

4.0 8.0 12.0 16.0 20.0

b)

Figure 2. Shift sele_:tivity of RER-hologram (a) and its dependence upon average

speckle size <o±> (b).

3.1 Data recording-re!rieval.

To verify experiment_dly the proposed data storage-retrieval concept, a breadboard

system was constructed. A model GSL150/S CW diode-pumped Nd:YAG laser with

output power 200 mW at)_ = 530 nm was used as the light source. The SONY model

LCX 026AL SLM with window size 2.3 x 2.3 mm and pixel size 22.5 x 22.5 lam was

used to form a signal c!aannel. The SLM was controlled by a PC that also had a National

Instruments PCI-1407 ,,ingle channel frame grabber for image retrieval. The data retrieval

was arranged with the CMOS detector (pixel size 110 x 11.0 !am).

The detector location a_ad limiting aperture were adjusted to produce the best SLM image

onto a CMOS detector array. The pixel pitch of the CMOS detector was 12 !am x 12 I.tm,

while that of the SLM was approximately 23 l.tm x 23 _tm. The imaging optics was

adjusted to produce a magnification of 1 SLM pixel to 2 CMOS pixels. Tests were also

conducted using a CCI) detector array with a pixel pitch of 8.4 lam x 9.8 _tm in place of

the CMOS. The magnification in this case was approximately 1 SLM pixel to 2.25 CCD

pixels in one axis and 1 SLM pixel to 2.6 CCD pixels in the other.

Once the SLM and detector were properly aligned, tests were conducted in which the

data area contained a known, random code and was projected onto either the CMOS or

CCD detectors. Each I:it of the code was represented by a value of either no attenuation

or full attenuation over an area of the SLM. The exact scaling was calculated during each

test by the program ba:;ed on the location of the four dark comers generated by the SLM

for alignment.

To test the reliability of the system using the initial test parameters, a series of known,
random codes were written to the SLM and read back by the detector. For each test, the

code read by the detector was converted back into a digital value and compared to the

original code written _o the SLM. Experiments in which several hundred codes were
written and read wen: conducted and the location of bits that contained errors was

293

tracked. Typical results of the random code generation and optical read-out from the

CMOS detector are shown in Figure 3, where both original (a) and retrieved (b) fields are
presented.

a) b)

Figure 3. Original (a) and retrieved (b) data-page.

The system was found to be generally reliable; however, some data bits proved to be

considerably more prone to errors than the rest. The system also seems to be extremely

sensitive to slight changes in alignment. However, at correct alignment of the optical tract

the performed tests with about 103 cycles allowed us to get the bit-error rate (BER) no

higher than three for the entire field of the detection area.

3.2 RER-beam storage in reflection geometry.

As a part of the recording process optimization, we studied the possibility of data

multiplexing using a reflection holography scheme. In this geometry the signal and

reference beams are illuminating the recording medium from opposite directions, and in

this way the reflection grating is formed. The essential benefit of the reflection geometry

over the transmission one is the possibility of building a more compact memory module.

Experimentally study of the reflection mode geometry operation the speckle-encoded

hologram was recorded with angle 0k = 165 ° between reference RER-beam and object

beam. Average speckle size of RER-beam in this experiment was <c_±> -- 7 lam. As it was

in transmission geometry the RER-beam was normal to the front surface of LiNbO3

crystal, and C-axis (optical axis) of the crystal was normal to its front surface. The object

beam had an incident angle 30 °, propagating from the opposite direction.

No anomalies in the shift selectivity behavior have been observed in this geometry as

compared to the transmission one, and a typically measured dependence of the

normalized diffracted beam intensity upon spatial decorrelation between recorded and

reconstruction positions of the RER-beam (shift selectivity) is shown in Figure 4. It is

worth of noting at this point that the angular selectivity of the plane wave hologram

recorded in a similar conditions was 8® > 5 ° that should result in extremely low storage

density, while RER-beam selectivity provides a very good results.

294

4. Summary and Conclusion 1.00

In summary, the random encoded reference

beam holographic recording demonstrates 0.80

extremely high selecti,,ity and therefore high

data storage. This selectivity is based on the

effects of spatial vclumetric decorrelation

between the recording and retrieving

reconstruction field. Contrary to angular or

spectral selectivity of the volume hologram,
the two mechanisms that are traditional used

for data multiplexing, the RER-beam 0.00

holograms can be macle free from sinc-type o.oo

intensity modulation at its reconstruction. That
should result in a much lover cross talk for this

type of multiplexing. We demonstrated that the

0.60

0.40

0,20

'',__[' I ' I ' I ' 1

\\\

\\

\

2.00 4.00 6.00 8.00 10.00

Shift A±{p.m)

Figure 4. Shift selectivity in reflection

RER-beam hologram operates equally well in geometry

both transmission or reflection geometry. These features makes RER-beam hologram

architecture attractive :-'or building compact data storage system with ultra-high density

and capacity.

References

[1] This research wa:; sponsored in part by the US Department of Energy.

[2] Xin An, D. Psaltis, G. Burr, "Thermal fixing of 10,000 holograms in LiNbO3:Fe,"

Appl. Opt., 38, pp. 386-393 (1999).

[3] J.Rosen, M. Segev, A. Yariv, "Wavelength-multiplexed computer generated

holography", Op,.Lett., 18, pp.744-746, (1993_.

[4] G. Rakuljic, V Leyva, A. Yariv, "Optical data storage using orthogonal

multiplexed holograms," Opt. Lett., 17, pp. 1471 (1992).

[5] S.Tao, D.Selvian, J.Midwinter, "Spatioangular multiplexed storage of 750

holograms in Fe:LiNbO3 crystal", Opt.Lett., 18, pp. 912-914, (1993).

[6] Darskii, V. Marl,ov, "Information capacity of holograms with a reference speckle-

wave grating." SPIE Proc. 1600, 318 (1992).

[7] V. Markov Yu. Denisyuk, R.Amezquita, "Speckle-shift hologram and its storage

capacity", Opt. Mem. Neural Net. 6, 91 (1997).

[8] V. Markov, M. Soskin, A. Khishnjak, V. Shishkov, Structural conversion of a

coherent beam w ith a volume phase hologram in LiNbO3" Soviet Tech. Phys. Lett.,

4, pp.304-306, 1_)78.

[9] D. Psaltis, M. l_even, A. Pu, G. Barbasthtis, "Holographic storage using shift

multiplexing," Opt. Lett., 20, pp. 782-784, (1995).

[10] A. Darskii, V. Vlarkov, "Shift selectivity of holograms with reference speckle

wave," Opt.& Slcectroscopy, 65, pp. 392-395,11988)

295

iSCSI InitJ_ator Design and Implementation Experience
Kalman Z. Meth

IBM Haifa Research Lab

Haifa, Israel

meth@il.ibm.com
tel : +972-4-829-6341

fax: +972-4-829-61 t3

Abstract

The iSCSI protocol provides access to SCSI devices over a TCP transport. Using the

iSCSI protocol enables one to build a Storage Area Network using standard Ethernet

infrastructure and standard networking management tools. This paper outlines how we

implemented a family of iSCSI initiators on a common core. The initially supported
initiators were on the Windows NT and the Linux Operating Systems. Code for a version

of the Linux iSCSI initiator has been released as Open Source. Initial testing indicates

that iSCSI can provide reasonable performance relative to traditional storage

environments.

1. Introduction

1.0 SANs and iSCSI

Storage Area Networks (SANs) provide a way for multiple hosts to access a shared pool

of remote storage resources. Traditional SANs are built using FibreChannel technology

[1] running the FCP protocol to carry SCSI commands over the FibreChannel network.

Two separate network infrastructures are needed in an environment that uses a Local

Area Network (LAN) for usual network activity and a SAN for shared remote: an

Ethernet (or equivalent) infrastructure (running TCP and similar protocols) for usual

LAN activity, and a FibreChannel infrastructure (running FCP protocol) for the SAN

activity, iSCSI [2] is a protocol that carries SCSI commands over the TCP protocol [3].

iSCSI enables access to remote storage devices using TCP over standard LAN

infrastructures. Using iSCSI dispenses with the need for a separate FibreChannel

infrastructure and the leed for a separate set of FibreChannel management tools. The

difference between a raditional SAN and a possible iSCSI setup is depicted in the

following figure.

297

Classic SAN iSCSl

Clients Clients

Servers Database Database

Server Server

FibreChannel File
Server

Web

Server

1.1 iSCSI Overview

The iSCSI protocol [2] is a mapping of the SCSI remote procedure invocation model (see

SAM2 [4]) over the TCP protocol [3]. Communication between the initiator and target

occurs over one or more TCP connections. The TCP connections carry control messages,

SCSI commands, parameters and data within iSCSI Protocol Data Units (iSCSI PDUs).

The group of TCP connections that link an initiator with a target form a "session". The

SCSI layer builds SCSI CDBs (Command Descriptor Blocks) and relays them with the

remaining command execute parameters to the iSCSI layer. The iSCSI layer builds iSCSI
PDUs and sends them over one of the session's TCP connections.

1.2 Design Goals

We designed and implemented a family of iSCSI initiators. Initial testing was performed

against an IBM TotalStorage 200i disk controller using a standard 100Mbit Ethernet

network connection. A major design goal of our initiators was to allow for multiple

Operating Systems to work on the same common code base. Each operating system has

its own set of interfaces for the SCSI subsystem and for its TCP transport. However, the

implementation of the iSCSI specification should be common to all operating systems.

When we upgrade to a different level of the iSCSI specification, only the common core

needs to change, while the OS-dependent code should remain more or less intact.

Additional design considerations of our initiators included:

- Allow the initiator to simultaneously use devices from multiple target machines.

- Utilize multiple TCP connections between and iSCSI initiator and target.

- Utilize multiple processors if running on an SMP (Symmetric Multiprocessor).

298

1.3DesignAssumptior_s
The commoncore wasdesignedand written using somebasic assumptionsabout the
OperatingSystem(OS)on which it would be run. We assumedthat the baseOperating
Systemwouldhavethe following features:
- Supportfor multipk threadsin thekernel.
- Reading/writingfrom TCP can be easily abslractedinto a single read/write

functioncall.
- SomeSCSI commandsmight be (re-) issuedfi_ominside the scsi completion

routine,thuspossiblyrunning at some priority level for which we may not block.

- Task Management l equests may arrive at some priority level, and hence we must

provide an implementation that does not block, if requested.

We also had in mind a :ertain layering of the SCSI subsystem that seems to be prevalent

in a number of Operatir g Systems. In both the Linux and Windows NT operating systems

there are 3 layers to the SCSI subsystem. There is one high-level (class) driver for each

type of SCSI device: disk, tape, CD, etc. There is a mid-level (port) driver that has

common code for all types of devices, which takes care of command timeouts and

serialization of commaJlds. The low-level (miniport) driver is specific to an adapter, and

must provide a queue,:ommand() or dispatch() routine that is used by the mid-level

driver. This 3-level layering is essentially the model that is presented in the Common

Access Method [5].

2. Implementation D_tails

2.1 Data Type and Function Abstractions
In order to build a common core, we abstracted the basic Operating System dependent

data types and services that we would need to use, and defined these individually for each

Operating System on which we implemented the iSCSI initiator driver. The basic data

types that we defined are described here with their corresponding Linux (2.2) definitions.

typedef spinlock_t

typedef struct wait_queue*

typedef uchar

typedef struct scsi_cmnd

typedef struct {
struct sockaddr in

struct socket

iscsiEvent t

} iscsiSock_t;

iscsiLock_t; /* basic spin lock */

iscsiEvent_t; /* sleep event */

iscsilrql_t; /* interrupt level */

SCB_t; /* SCSI Command Block */

/* TCP connection descriptor */

sin;

*sock;

event;

The basic services that must be provided by each Operating System and their

corresponding Linux implementation are:

#define iscsiOSmalloc(size) kmalloc(size, GFP_KERNEL)

#define iscsiOSlock(lock, irql) spin_lock_irqsave(lock, (*irql))

299

#defineiscsiOSunlock(lock,irql) spin_unlock_irqrestore(lock,irql)
#defineiscsiOSsleep(event)sleep_on(event)
#defineiscsiOSwakeup(event) wake_up(event)

The commoncoreusesthesemacros,which enableus to write codethat is commonto
multiple platforms.The commoncore must also call some functionsto perform TCP
operations.Their prototypesaregivenbelow.

s32iscsiOSreadFromConnection(iscsiSock_t*sock,void *buffer,u32len,u32offset);
s32 iscsiOSwriteToConnection(iscsiSock_t*sock, void *header,u32 headerLen,void
*buffer, u32len,u32offset);
s32iscsiOSmakeConnection(u32addr,ul 6portNum,iscsiSock_t*isock);
void iscsiOScompleteCommand(SCB_t*scb,u32 status);

The core provides a number of routinesthat the OS-dependentlayer can call. The
prototypesof themaincorefunctionsaregivenbelow.

s32 iscsiCoreCreateSession(u32addr, ul6 portNum, u32 nConnections, uchar
*loginParams,u32loginParamsLen);
s32 iscsiCoreEnterCmdInQ(SCB_t*scb, void *cdb, u32 cdbLen, u32 sessionhandle,
iscsiLUN_tlun, void *data,u32datalen,u32flags);
u32iscsiCoreResetDevice(u32sessionHandle,SCB_t*scb, iscsiLUN_tlun);

TheOS-dependentcodecalls iscsiCoreEnterCmdInQ0for eachcommandthatit wantsto
sendto thetarget.Thecorethentakesoverandprocessesthecommand,sendingit to the
target, receivinga responsefrom the target,and reporting the resultsback to the OS-
dependentcodeby callingtheiscsiOScompleteCommand0function.

2.2 Common Core General Structure

For each session established by the initiator (i.e. for each target), the initiator maintains a

queue of items that must be sent to the target. We call this queue the command queue.

The initiator also maintains a dedicated command queue handler thread to read items

from this queue and to send them to the target.

The initiator maintains state of each command that has been sent to a target. This state

information is saved in a table, indexed by an Initiator Task Tag. The target may send

status or R2T (Ready to Transfer) PDUs to the initiator relating to a particular command.

The Initiator Task Tag is used to easily look up the relevant information in the table.

For each TCP connection (even if we have multiple connections for a single session) the
initiator maintains a dedicated thread to read from that TCP connection. The use of

separate threads to read from each TCP connection and to send out messages allows us to

better exploit the CPUs while waiting for data to arrive or be sent over a network

connection. A read thread posts a read request on its TCP connection to receive an iSCSI

header. The thread waits until data has arrived and has been placed in its buffer. The read

thread parses the iSCSI header to determine how much additional data follows the

300

header. The read thread then posts a read request for the data of specified length,

providing an appropriate buffer into which the data is to be placed. The read thread then

performs whatever processing is needed to handle the PDU.

2.3 Implementation L_,ssons

In this section we briefly discuss some problems we encountered and lessons we learned

in our implementation.

Windows NT expects command completion to occur from within an interrupt handler.

Since we did not have _ny real hardware of our own, and all of our internal threads ran at

regular priority, we brcke a basic assumption of the Windows NT SCSI subsystem. We

had to artificially create an interrupt in order to get the Windows NT SCSI subsystem to

complete the processin L of commands that were handled by our driver.

Linux also expects commands to be completed in a type of interrupt handler. A certain

lock must be obtained and interrupts must be blocked when calling the Linux SCSI

command completion handler.

In Linux, SCSI commands might be issued from within an interrupt handler. The call to

iscsiCoreEnterCmdlnQO might therefore be called from within an interrupt handler, and

any locks that we obtain in that routine must be safe to obtain and contend with an

interrupt handler. It is Eherefore necessary to block interrupts whenever we obtain locks

that may also be obtained at interrupt level inside the iscsiCoreEnterCmdInQO function.

There is an inherent problem in mounting and unmounting iSCSI disks automatically

upon reboot. In general, when the system first tries to mount its file systems, the network

isn't yet up, thus prev, mting us from reaching our iSCSI disks. Also, the disk cannot

automatically unmoun! cleanly during shutdown since by the time the system tries to

sync its disks the netw(_rk may already be gone.

2.4 Performance

We performed some p'eliminary measurements of iSCSI performance versus a directly

attached IDE disk. We ran the IOTEST benchmark [7] on Linux for different sized block

transfers and compared the results. The following graph shows the relative number of

read operations betwee 1 the iSCSI and local IDE disk.

Improvement of iSCSI over local disk

%

50% ,

40%

30%

20%

10%

0%.

-10%

-20%

0-_

0.5 4

Kb

16 32 64

301

For smalldatatransfers iSCSI outperformed the local IDE disk by about 30%, despite the

network overhead. This is due to the higher performance SCSI disks on the TotalStorage

200i target. Using the TotalStorage 200i SCSI disk locally outperformed iSCSI by about

3% for small transfers. For large data transfers, the network overhead started to take on a

larger and larger impact, causing the iSCSI performance to be up to 12% worse than the

local IDE disk. This is apparently due to the numerous interrupts needed for the

packaging and processing of many small TCP packets for a large data transfer. This

phenomenon should be alleviated when using Network Interface Cards (NICs) that

offioad the TCP processing, thereby reducing the number of interrupts that must be
handled by the host.

3. Related Work

Network Storage is becoming more and more common, allowing remote hosts to more

easily access remote and shared data. A number of studies have been performed that

show that IP attached network storage can provide reasonable performance relative to

FibreChannel and other storage environments. See, for example, [8] [9] [10].

Other early iSCSI initiator drivers have been made available as Open Source [6]. Some of

these early implementations support a fixed target with a single TCP connection. Some of

these implementations were written and tested for uniprocessors, and could not take

advantage of the multiple processors in an SMP. Our implementation has the distinction

of allowing multiple targets, multiple TCP connections within each session to a target,

and the ability to fully exploit SMP machines. The performance achieved on a

uniprocessor by the other software iSCSI initiator implementations that we tested

(against the same target) were essentially the same as for our initiator.

4. Future Work

A version of our Linux initiator has been released as Open Source [11]. We continue to

revise our driver to keep up with changes in the iSCSI specification as it evolves. Over

time, we are adding additional features that are defined in the specification. We intend to

perform comprehensive performance measurements and adjust our driver accordingly.

5. Conclusion

We implemented a family of iSCSI initiators utilizing a common core. We outlined our

basic design objectives and how we implemented our initiators. When we upgraded to a

newer version of the iSCSI specification, we were able to perform the necessary changes

to the common core to correspond to the new iSCSI specification, while the OS-

dependent parts of the code remained essentially unchanged. Our implementation allows

multiple targets, multiple TCP connections within each session to a target, and the ability

to exploit SMP machines. Using the IBM TotalStorage 200i target, iSCSI significantly

outperforms the local IDE disk for small data transfers, but lags behind IDE for large data

transfers, apparently due to the extra overhead of network interrupts.

302

Acknowledgement

The author has had the benefit of interacting and drawing on the experience, ideas, and

help of many people th_tt were involved in the iSCSI project. The author would especially

like to thank Zvi Dubit_:ky, Eliot Salant and Liran Schour for their contributions.

References

[1] Benner, A. Fibre Channel." Gigabit Communications and I/O for Computer Networks,

McGraw Hill, New York, 1996.

[2] Julian Satran, et al, iSCSI (Internet SCSI), IETF drafi-ietf-ips-iscsi-lO.txt (Jan 20,

2002); see www.ece.cmu.edu/-ips or www.haifa.il.ibm.com/satrardips

[3] RFC793, Transmssion Control Protocol, DARPA Internet Program, Protocol

Specification, Sep 198 l.

[4] SAM2, SCSI Architecture Model - 2, T10 Technical Committee NCITS (National

Committee for]nform:ttion Technology Standards), T10, Project 1157-D, Revision 20,

19 Sep 2001.

[5] CAM, Common Access Method - 3, draft of American National Standard of

Accredited Standards Committee X3, X3T10, Project 990D, Revision 3, 16 Mar 1998.

[6] See www.ece.cmu.c, du/-ips/IPS_Projects/ips_projects.html.

[7] See www.soliddata com/products/iotest.html.

[8] Rodney Van Meter, Greg Finn, and Steve Hotz, "VISA: Netstation's Virtual Internet

SCSI Adapter," in Pro¢_eedings of the A CM 8 th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS) (San Jose,

Calif., Oct.), ACM Pre_s, New York, 1998, 71-80. see also www.isi.edu/netstation.

[9] Wee Teck Ng, Hao Sun, Bruce Hillyer, Elizabeth Shriver, Eran Gabber, and Banu

Ozden, "Obtaining Hifh Performance for Storage Outsourcing", FAST 2002, Conference

on File and Storage Technologies, Jan 2002.

[l 0] Garth A. Gibson _,nd Rodney Van Meter, "Network Attached Storage Architecture",

Communications of the ACM, Nov 2000, vol 43, no. 11.

[11] See oss.software.i_m.com/developerworks/projects/naslib.

303

Efficiently Scheduling Tape-resident Jobs*

Jing Shi, Chunxiao Xing, Lizhu Zhou

Department of Computer Science and Technology

Tsinghua University

Beijing 100084, RR.China

Shijing@m_ ils.tsinghua.edu.cn, {xingcx, dcszlz }@tsinghua.edu.cn
Tel: +86-10-62789150

Abstract

Many large-scale data-intensive applications need to use tape library to manage large data

sets, thus it is critical t.) study the online access techniques of tape library. The focus of

this paper is on efficient tape-resident jobs scheduling, which is the key technique for

improving performance of tape storage systems. We present several scheduling

algorithms for tape-resident jobs, discuss the effectiveness of scheduling policies under

cache-limited and cache-unlimited condition, and show the results of simulation

experiments.

1 Introduction

Many data repositories are expected to become huge, possibly counted by terabytes in

size. Examples of such repositories include terabyte-level Telecommunications Call

Detail Warehouse, petabyte-level Digital Libraries, exabyte-level National Medical

Insurance Records, Zettabyte-level Spatial and Terrestrial Database and video and Audio

Data Archives[I][2]. The management of such large data sets requires the use of tertiary

storage, typically implemented by using tape libraries. As a result, accessing, analyzing,

mining, and other datz,-intensive applications can comprise of many tape-resident jobs

that retrieve either wholly, or in part, data from tapes.

Tape library is characterized by (1) the use of removable tape media and a robot arm, (2)

sequential access of data, and (3) the performance bottleneck caused by tape access.

Tape-resident job usually consists of more than one request, each of which must be

completed before the job is finished, and uses disk cache space to store the data of its

completed requests. "Io improve the performance of tape-resident jobs, we have to

consider the following two problems -- the accessing latency of tape library, and the

capacity limitation of disk cache for storing the retrieved data from tapes.

Previous studies mostly focus on the request scheduling of tape library to improve

performance of robotic storage library[3][4][5][6]. But our goal is to schedule the jobs

consisting of a set of requests to minimize the completion time of the whole job. A study

closely related to ours is the one in which the scheduling problem of tape-resident jobs is

reduced to well-known flow-shop scheduling[7]. However, it doesn't consider the

optimal scheduling of lape libraries.

In this paper, we will introduce better scheduling strategies for executing tape-resident

jobs. We will discuss 1-ow to improve the performance of tape-resident jobs by optimized

* This research is sponsored b5 the National Grand Fundamental Research 973 Program of China under Grant
No.G 1999032704

3O5

I/O performanceof tape library, and discussthe effectivenessof schedulingpolicies
undercache-limitedconditionor cache-unlimitedconditionby simulationstudy.Section
2 gives the schedulingproblem description of tape-residentjobs. The scheduling
algorithmswill be presentedin Section3 and the simulation results for performance
comparisonof schedulingalgorithmswill be given in Section 4. Finally, Section5
concludesthepaper.

2 Problem Description

A tape-resident job consists of a set of requests, each of which is a read operation for a

set of continuous blocks on a tape. We assume that the requests are independent of one

another, that is, requests don't need to be executed in some forced order. The reason is

that the access of tape library is much slower than that of disk, if processor begins to

execute the job before the data involved in by its requests are all loaded into disk cache,

then the job is possibly blocked for waiting unloaded requests. So we reduce the

execution principle of tape-resident jobs to a simple form, that is, the job doesn't begin to

execute until the data of its requests are all loaded into disk. This assumption means that

the data of requests may be loaded by any order. The following Fig. 1 is the description

model of tape-resident jobs.

Request

Job wait queue ////

i _ _/
eeeeeeo oee

Poisson Job-3 Job-2 Job- 1
batch

arrival
Disk cache

Tape library

Fig. 1 The description model of tape-resident jobs

Since a job of several requests may involve more than one tapes, combining jobs that

access the same media will make system process as much requests as possible in a tape

schedule. One problem is that if jobs are not properly scheduled, the disk cache may be

run out quickly. Therefore, it is critical to study the correlation between tape drive

utilization and disk capacity limitation for tape-resident job scheduling. To do so, we

consider the following optimization policies when designing tape-resident job scheduling

algorithms:

• To improve the I/O performance of tape library

• To reduce resident time of data of jobs on disk cache

• To coordinate the input and output throughput of jobs to or from disk cache

3 Scheduling Algorithmic Issues

We study our scheduling problems under two kinds of restrictive conditions respectively:

cache-limited and cache-unlimited. The former means the selection of scheduling policies

must take the available space on disk cache into consideration, and the later assumes that

306

there is enoughspaceof disk cache for scheduling. We first present five scheduling

algorithms under the second condition, and then discuss these algorithms with the first

condition of constraint. The algorithms focus on two key points: tape selection policy,

and scheduling list creation (a scheduling list is an ordered list of requests for a selected

tape).

(1) FCFS (First Come First Service), This algorithm services the jobs in the order of

arrival, and always chooses the tape that the first request in job wait queue accesses to for

next execution. The scheduling list of selected tape includes all requests that belong to the

job and access the selected tape. These requests will be executed within one sweep of the

tape.

(2) Max-EBW (Maximum Effective BandWidth). This policy improves the scheduling

of tape-resident job in maximizing I/O performance of tape library. It always chooses the

tape with maximum effective bandwidth for the next execution. The effective bandwidth

of a tape is defined to be the total number of bytes transferred from the tape divided by

the number of seconds consumed to perform this tape schedule.

(3) FCFS-PICKUP. Tills algorithm uses simplest tape selection policy--FCFS, namely,

it always selects the tape to be accessed by the first request of a job in the wait queue, and

then the algorithm insel-ts all requests of other jobs in the wait queue that will access the

selected tape into its scheduling list, which is called the PICKUP policy for scheduling
list creation.

(4) DYN-PICKUP. This algorithm has similar tape selection and scheduling list creation

as FCFS-PICKUP. Be,,ides this, it particularly considers the new arrival jobs. When the

requests belonging to a new arrival jobs are trying to access the blocks on online tape that

the tape head will pass over during the current sweep, they will be inserted into the

running scheduling list. This is the dynamic policy for scheduling list creation.

(5) TUNING-PICKUP. This algorithm makes FCFS-PICKUP scheduling tunable. It

uses PICKUP intension factor F, which indicates that PICKUP scheduling is only

applied among the first F waiting jobs in the job wait queue, to tune the scale of

scheduling list. Obvio_My, larger F means both larger cache occupation, and quicker

response time. The selection of proper F value is the difficult point of this algorithm.

Currently, we determirte the F value by simulation experiments. A proper method for F
value selection will be _tudied.

Above algorithms haze different cache requirement: FCFS needs least cache space;

TUNING-PICKUP may tune the size of cache occupation by changing PICKUP

intension factor F; and other algorithms use more cache space than FCFS, but are not able

to tune cache requirerrent. The comparison details of above algorithms will be given in
next section.

4 Simulation Study

In this section, we giv. _ two groups of simulation results, each of which consists of two

307

figures: average response time of jobs and maximum cache requirement of jobs. The

simulation parameters of tape library are based on Exabyte 220 tape library with two

Eliant 820 drives and twenty EXABTYE 8mm tapes. In addition, we assume that the job

arrival is stochastic and follows Poisson distribution. Each job averagely consists of 8

requests that have the average size of 64M bytes. We also assume that the disk cache

should at least meet the maximum storage requirement of any job. The jobs are
independent of one another.

Fig.la and Fig.lb show response time and cache occupation curves for all algorithms

except for TUNING-PICKUP. From the graphs we can observe that FCFS has least cache

occupation but longest response time, and other algorithms significantly improve the

average response time of tape-resident jobs by optimizing I/O performance of tape library.

This performance improvement from tape library optimization has an associated cost in

terms of storage space. The Figure also indicates that FCFS-PICKUP is the best

scheduling policy. The reason is that it uses FCFS policy to speed up job output from

disk cache while it takes advantage of PICKUP policy to improve I/O performance of

tape library. Although the time performance of DYN-PICKUP policy is slightly better

than that of FCFS-PICKUP, but its cache occupation is much higher than FCFS-PICKUP

and Max-EBW. Its heavier workload creates proportionally larger storage requirement.

25000

"_ 20000

15000

o

10000

5000

Max-EBW

FCFS /_

+ FCFS-PICKUP /

0 2.4 4.8 7.2 9.6

Jobs per hour

Fig. la Comparison of response time

12

50000

0

'_ 40000

o _30000

1= L->20000

E

10000

o

+Max-EBW

, k'k,_ -- -- -- _, _, ,

0 2.4 4.8 7.2 9.6
Jobs per hour

Fig. 1b Comparison of cache occupation

12

The next simulation experiment explores the correlation between response time and

cache space for FCFS-PICKUP algorithm and TUNING-PICKUP algorithm. We use

PICKUP intension factor F to tune the size of cache occupation. This is very helpful in

achieving a reasonable response time for tape-resident jobs when cache space is limited.

Fig2a and Fig.2b illustrate when properly tuned, the time performance of

TUNING-PICKUP is close to that of Max-EBW, but its space occupation is significantly
reduced.

5 Conclusions

This paper discusses some efficient scheduling algorithms for tape-resident jobs. Our

contributions include: (1) incorporate optimal I/0 scheduling policies of tape library into

the scheduling of tape-resident jobs so as to improve performance of tape-resident jobs

by increasing the data throughput of tape library processing; (2) design better algorithm

308

FCFS-PICKUPfor cache-unlimitedsystem and TUNING-PICKUP for cache-limited
system.The futurework is to give a practicalevaluationmethodfor PICKUP intension

factor F so that we may simply select factor F value for TUNING_PICKUP algorithm

according to both workload and cache size.

25500

_" 20500

15500
=
©

10500

5500

50O

39000

34000

"_ _ 29000

: 24000

--_#- 19000

o= 14000

9000

4000

+Max-EBW /t _

+ FCFS-PICKU P /

4.8 7.2 9.6 12
4.8 7.2 9.6 12 Jobs per hour

Jots per hour Fig. 2b The comparison of cache

Fig 2a The comparisor of response time occupation

Reference

[1] Carifio F., Kaufmar n A. and Kostamaa P., Are you ready for Yottabytes?, In Proc. of

17th IEEE symp. or Mass Storage Systems in Cooperation with the 8th NASA GSFC

conf. on Mass Stor_ ge Systems and Technologies, pp. 476-485, Match 2000

[2] John Jensen, John Kinsfather and Parmesh Dwivedi. Data Volume Proliferation in the

21 _t Century--The Challenges Faced by the NOAA National Data Centers (NNDC),

In Proc. of 17 th IEEE syrup, on Mass Storage Systems in Cooperation with the 8 th

NASA GSFC conf. on Mass Storage Systems and Technologies, pp. 335-350, Match
2000

[3] Bruce K.Hillyer and Avi Silberschatz, Random I/O Scheduling in Online Tertiary

Storage Systems, In Proc. of the 1996 ACM SIGMOD Inter. Conf. on Management of

Data, pp195-204, Canada, Jun 3-6 1996

[4] Bruce K. Hillyer, Rajeev Rastogi and Avi Silberschatz, Scheduling and Data

Replication to Implove Tape Jukebox Performance, ICDE'99, pp. 532-541, 1999

[5] Toshihiro NEMOTO and Masaru KITSUEGAWA, Scalable Tape Archiver for

Satellite Image Database and its Performance Analysis with Access Logs--Hot

Declustering and [tot Replication--, In Proc. of 16 th IEEE symp. on Mass Storage

Systems in Cooperation with the 7th NASA GSFC conf. on Mass Storage Systems and

Technologies, pp. 59-71, 1999

[6] Shi Jing and Zhou Lizhu, Dynamic Scheduling and Tuning to Improve Online Tape

Library Performance, In Proceedings of the 6 th International Conference for Younger

Computer Scientist s (ICYCS'2001), pages 120-124, Oct. 2001

[7] Sachin More, S. Muthukrishnan and Elizabeth Shriver, Efficiently Sequencing

Tape-resident Jobs, In Eighteenth ACM Symposium on Principles of Database

Systems, 1999

309

The storage stability of metal particle media : Chemical analysis and

kinetics of lubricant and binder hydrolysis

Kazuko Hanai ,Yutaka Kakuishi

Research & Development Center,Recording Media Products Div.,

Fuji Photo Film Co.Ltd.

2-12-1 Ohgi-cho

Odawara Kanagawa, 250-(}001, Japan

hanai@mrdc.fujifilm.co.jp

kakuishi@mrdc.fujifilm.co.jp
tel: +81-465-32-2023

fax: +81-465-32-2170

Abstract

Archival life of MP (metal particles) tape is one of the biggest concerns for mass data

storage users. The long-term stability of an MP tape is studied in terms of lubricant and

binder systems. MP for,nulation tape that has been used for M2 videotape and DLT3 tape

for more than fourteen years is analyzed. Gas chromatography (GC) and gel permeation

chromatography (GPC) are used to analyze chemical changes of lubricant, fatty acid ester,

and binder, polyester-polyurethane. The kinetics of hydrolysis of the fatty acid ester can

be described by two first-order reactions. One is estimated to be corresponding to the

hydrolysis of fatty acid ester on the surface of the magnetic layer, and the other to the

fatty acid ester dissolved in the binder of magnetic layer. The hydrolysis of

polyester-polyurethane (PU) can also be described by a first-order reaction. A durability

test reveals that this MP tape keeps its good performance after long-term storage. A

magnetization decrease of about twelve percent is observed after saving for fourteen

years. This small decrease does not affect the above mentioned good performance.

1 Introduction

MP tape has been w_dely used in the fields of mass storage, broadcast, etc. In these

fields, storage stability of MP tape is very importanl together with recording density. For

development of MP media excellent in storage stability, it is necessary to know the

problems in long-tern.: storage. The claims during the use were investigated, and it

became clear that mar_y of them were due to the hydrolysis of the fatty acid ester as
lubricant and the PU as binder.

As the first step of estimation of life expectancy of media, it was decided to study

chemical changes of o_ganic materials of MP formulation tape that has been used for M2

videotape and DLT3 tape for more than fourteen years. In addition, the magnetic

properties and other physical characteristics were investigated and the durability was
tested.

2 Experimental

The MP tapes for M2 stored in a laboratory for more than fourteen years were analyzed.

Two types of fatty acic ester are contained as lubricants in the tape. One fatty acid ester is

buthoxyethoxyethoxy itearate (BE2S) and the other is isoamyl stearate (AS). They were

extracted with n-hexar_e from the tape and were quantified by GC (Shimadzu GC-17A).

311

Analysis of binder was also performed. Polyvinyl chloride and PU are contained as

binder in the tape and they are crosslinked by hardener. PU used in a magnetic layer of

this tape consists of methanediphenyl diisocyanate, hydroxycaproic acid, neopentyl

glycol and phthalic acid. The magnetic layer was removed mechanically from magnetic

tape and the soluble components were extracted with tetrahydrofuran. The extracts were

analyzed by GPC (Toso HPLC8020) with an ultraviolet detector. Polyvinyi chloride

shows no absorption in the ultraviolet region and only PU can be quantified.

3 Results and Discussion

3.1 Fatty acid ester

It was reported that lubricant loss in short term accelerating conditions is due to

degradation and vaporization[I][2]. In our study, the decay of lubricant in long-term

natural storage was investigated from a viewpoint of hydrolysis. It is known that the

hydrolysis reaction of ester is first-order to ester concentration if enough water exists.

The amount of fatty acid ester which remains in the tape and can be extracted with

n-hexane is shown in Fig.1 and the decay rate constant of fatty acid ester is shown in
Fig.2 and Tab. 1.

The decay reactions of the two fatty acid esters are expressed as two first-order reactions

of two steps in which each reaction rate differs. The ratio of reaction rate of BE2S to that

of AS is shown in Tab.2. In the first step, although AS is smaller and more volatile than

1.0

0.9

0.8

_ 0.7

_ 0.6

0.5

0.4

0.3

_ 0.2

0.1

0.0

o
BE2S

0 5 10

years

Flg.l Decay of Fatty Acid Ester

15

1.2

1.0

0.8

Y

5 o.6 /

0.4

0.2

-[]

[] -'" O

.' o ..-" • BE2S(Ist)
• " .-'" O BE2S(2nd)

O'.O" O O AS(lst)
,:'" o AS(2nd)

0.0 _';'

0.0 5.0 10.0

years

Fig.2 Reaction rate of Fatly Acid Ester

C0;initial amounl

C0-X;remain ing amount

15.0

BE2S, the decay loss reaction rate of BE2S is about 3.6 times of that of AS. This ratio of

reaction rate is approximately equal to the ratio of hydrolysis reaction rate of fatty acid

esters measured in acetone containing a small amount of HCI. Therefore it is considered

that hydrolysis reaction is dominant in the first step. In the second step, the reaction rate

of BE2S is about 1/6 of the first one and the difference of reaction rate of BE2S and AS

is small, so vaporization is considered to be involved. It is assumed that the first decay

312

BEZS(lst)
BE2S (2nd)

AS(1st)
AS (2nd)

year

2.9E-01

/sec

9.3E-09

4.3E-02 1.3E-09

8.2E-02 2.6E-09

3.9E-02 1.2E-09

Table 1 The Decay Rate Constant of Fatty Acid Esters

3.6 1.1
In acetone solution made weakly acidic with HCI

3.1

Table 2. The Decay Rate Ratio of BE2S/AS

comes from the fatty acid ester on the magnetic layer surface and the subsequent slow

decay comes from the fatty acid ester dissolved in the magnetic layer binder. The

thickness of the fatty acid ester layer on the surface is calculated to be about 0.7

nanometers from the quantity lost at the first step reaction and the surface area of the tape

measured by gas-adso_tion method. The concentration of the fatty acid ester dissolved in

the magnetic layer binder is also calculated to be about 3 wt%, and is equal to the

concentration at which binder films become opaque when the varying amount of fatty
acid ester is added.

3.2 Polyester-polyuret hane

/year

1.4E-03

/sec

4.3E-11

Table, 3. The Decay Rate of Polyester Polyurethane

Though hydrolysis of PU of magnetic tapes had been reported [3][4], PU of MP tape in

long-term natural storage was not yet investigated. We attempted to obtain the reaction

rate of hydrolysis of PU using the ratio of the soluble component to PU content and the

number average mole_:ular weight of soluble PU. If one ester linkage of polymer is

broken by hydrolysis, 1he number of PU molecules increases by one[5]. In order to find

the hydrolysis reaction rate, the reciprocal of number average molecular weight was used

313

7.0E+18

6.5E+18

_ 6.0E+18

_ 5.5E+18

_ 5.0E+18

_ 4.5E÷18

4.0E+ 18

Q
3.5E+18

0.1 1 10

year

_g.3 Molecule Number of Soluble PU

e_racted from magnetic layer lg

100

2.0E-02

1.8E-02

1.6E-02

1.4E-02

1.2E-02

1.0E-02

8.0E-03

6.0E-03

4.0E-03

2.0E-03

0.0E+00

0 5 10 15 20

year

Fig.4 Reaction Rate of PU Degradation

Co;total linkage number in PU

X;ester linkage number broken

(=increased molecule number)

as the number of soluble PU molecules. The number of soluble PU molecules is shown in

Fig.3. The number of soluble PU molecules increased remarkably after about 2 years, and

hydrolysis reaction was considered to become predominant. Hydrolysis reaction rate was

calculated using the increase of the number of molecules, as a first-order reaction shown

in Fig.4 and Tab.3. The hydrolysis reaction of PU is extremely slow when compared to

the hydrolysis of fatty acid ester in this magnetic tape. The reason is considered to be

because PU is a high polymer and is crosslinked by hardener.

3.3 Physical characteristics and Durability test

Physical properties and video output level of a new tape and the tape stored for 14 years

were measured and were compared in Tab.4. A 1-minute length x 1,000 passes running

test using an M2 VCR was also performed as a durability test. Though remanence

magnetization loss was about 12 % after 14 years, the decrease of video output level was

0.6 dB and was acceptable in practical use. The glass transition temperature of the

magnetic layer did not change. The friction coefficient of the magnetic surface increased

slightly but kept at a low value. After running for 1,000 passes as the durability test, the
slight debris on the video heads was observed. But there was no difference between these

two tapes in the amount of debris. These tests reveal that this MP tape keeps its good

performance after long-term storage.

314

Storage Time (years)

Magnetic Properties

Br (Gauss)
Mechanical Properties

Glass transition temperature of magnetic

layer (degree at Celsiu,,)

Friction coefficient of nagnetic surface

Electro Magnetic Conversion Properties

Video output (dB)

0 14 Test Method

2,640

82

0.22

2,320

82

0.31

-0.6

VSM

Dynamic
viscoelastometer

Vs. Stainless bar

M2VCR

Table 4. C aanges of Properties of MP Tape after Long-Term Storage

4 Conclusions

The physical characteristics and the chemical changes of the MP tape over 14 years

were pursued, and the storage stability of the MP tape was proved to be satisfactory.

The hydrolysis reactiors of lubricant and binder in the MP tape could be expressed as

first-order reactions, and the reaction rates were calculated. It becomes possible to make a

quantitative comparisor_ between the changes in the natural storage conditions and those

in the accelerating test,',. The thickness of surface fatty acid ester of the magnetic layer

and the concentration of fatty acid ester dissolved in the binder can be estimated.

Usually,these are very difficult to quantify by other techniques such as ESCA or AES

because fatty acid eslers are volatile and have no special element except carbon,

hydrogen and oxygen il_ common as magnetic layer binder elements[6].

The accelerating conditions which can be used to simulate more precisely the passage of

long time on the basis of these data will be established and be applied for the

development of new m_dia.

References

[1] The National

[2]

[3]

[4]

[5]

[6]

?Aedia Laboratory(NML) "Media Stability Studies Final

Report,"p40(1994)

E E Klaus,B Bhushan, "The Effects of Inhibitors and Contaminants on the

Stability of Magnetic Tape Lubricants, " Tribology Trans., 31 (1988) 276-281

E F Cuddihy, "Aging of Magnetic Recording Tape, " IEEE Trans. On

Magn., MAG- 16 (1980) 558-568

H N Bertram anJ E F Cuddihy, "Kinetics of the Humid Aging of Magnetic

Recording Tape," .tEEE Trans. On Magn.,MAG-18 (1980), 993-999

K.Yamamoto, "A iZAnetic Study of Polyester Elastmer's Hydrolysis in Magnetic

Tape, " Proceedir, gs of the 4th Sony Research Forum (1995) 367-372

M S Hemstock and J L Sullivan, " The Durability and Signal Performance of Metal

Evaporated and Metal Particle Tape, "IEEE Trans. On Magn.,32 (1996) 3723-3725

315

Jawi and Real Time Storage Applications

Gary Mueller
195 Garnet St

Broomfield, CO 80020-2203

garymueller@qwest.net
Tel: + 1-303-465-4279

Janet Borzuchowski

Storage Technology Corporation
2270 South 88 th Street

M. S. 4272

Louisville CO 80028

janetborzuchowsk@qwest.net
Tel: +I-303-673-8297

Abstract

Storage systems have storage devices which run real time embedded software. Most

storage devices use C and occasionally C++ to manage and control the storage device.

Software for the storage device must meet the time and resource constraints of the storage

device. The prevailing wisdom in the embedded world is that objects and in particular

Java only work for simple problems and can not handle REAL problems, are too slow

and can not handle time critical processing and are too big and can't fit in memory

constrained systems.

Even though Java's roots are in the embedded application area, Java is more widely used

in the desktop and enterprise environment. Use of Java in embedded real time

environments where performance and size constraints rule is much less common.

Java vendors offer a diezying array of options, products and choices for real time storage

applications. Four main themes emerge when using Java in a real time storage

application; compiling Java, executing Java with a software Java Virtual Machine (JVM),

executing Java with a hardware JVM and replacing a real time operating system (RTOS)
with a JVM.

The desktop and enterprise environment traditionally run Java using a software JVM that

has been ported to a particular platform. The JVM runs as a task or process hosted by the

platform operating system. With the performance and memory available on most

workstations and personal computers, running an application on a software JVM is not an

issue. However, many desktop and enterprise applications are not faced with the critical

time and space constraints of an embedded application. Because of these constraints,

running an embedded application on a software JVM incurs the additional overhead of

software running software. Although it might be possible to run some embedded

applications on a sof_ are JVM because of the tremendous speed of some processors, for

most embedded applications, this configuration will not met timing or space constraints.

For a real-time storage application, running a JVM in software is typically only used for

tasks which are not time critical. Typical tasks include hardware configuration,

317

maintenanceand diagnostics,or upgradingor loading new code. For thesetasks,a
softwareJVM can meet the performanceand spacerequirements.The softwareJVM
typically runsasa low priority task. Othertime critical tasksarewritten in C or C++and
donotusethe intermediaryJVM.

CompiledJavais an acceptableoptionsincetheJVM is eliminatedandthefunctionality
of the JVM such as garbagecollection is wrapped into a set of runtime libraries.
Compiling Java gives you the benefit of an object-orientedlanguagewithout the
performancepenaltyof aninterpretedlanguage.

The ultimate in speedand performanceis attainedwhen the JVM is cast in silicon.
Severalhardwarevendorsare planning or currently offering coprocessorsor custom
chipsthatexecuteJavadirectly in hardware.

Since the JVM provides the runtime environmentfor Java, in essencean operating
system,oneinterestingapproachis to usetheJVM asareplacementfor aRTOS.

This paper discussesthe advantagesand disadvantagesof each approachas well as
specificexperiencesof usingJavain acommercialtapedriveproject.

1 Why Java for Real Time Storage Systems?

Java is an object-oriented language which gives you all the advantages of object

technology, including faster delivery to market, more maintainable code, and easier

adaptation to change. Java enforces the discipline of object design. Using Java in an

embedded environment presents several challenges. Embedded applications have both

functional and timing requirements and run in resource constrained environments. Java

must meet the performance and space requirements of the embedded application. Some
questions to answer include:

• Space the final frontier, will the JVM and class libraries fit?

• Performance, can the JVM run fast enough to meet hard real time deadlines?

• Scheduling, is the JVM deterministic and can non-deterministic tasks, such as

garbage collection be scheduled?

2 Java Basics

Java is both a language and an environment which supports compilation and execution of
the language.

Java, the language, supports single inheritance, polymorphism and other object concepts.

Java is compiled to an intermediate language, Java byte codes, the assembly language for

the JVM. The output of the Java compiler is a class file, which contains the Java

bytecodes.

Java, the environment, is a virtual machine that has been ported to many operating

systems and processors. The JVM interprets and executes the Java bytecodes and is

usually written in C or C++. The JVM loads the Java class with a class loader, links the

class files, verifies the bytes in a class file for correctness, prepares the class files for

318

execution, initializes the class, resolves method references and determines when to

garbage collect unused classes. A typical Java environment is shown in Figure 1.

Java Compiler)

/

Figure 1 - Java Runtimc Environment

3 Flavors or Java for Embedded Systems

There are four flavors cfJava for embedded systems:

• Software Java \irtual Machine

• Compiled Java

• Hardware Java Virtual Machine

• Java as a Real Iime Operating System

Java Virtual Machine

3.1 Software Java Virtual Machine

A software JVM is an application, process or task that typically is hosted by another

operating system. Software JVMs are typically used for desktop or enterprise

applications. Most desktop applications execute Java using a JVM running as a process

or task on the desktop. Browsers execute Java with a JVM in the browser. This is the
classic use of Java.

Since Java is interpreted by another program, the software JVM, there is a concern about

the performance of the application which the JVM is executing. In particular, embedded

applications must execute within specific time frames. Executing the embedded

application on the JVM which itself is being executed raises the question of how fast the

embedded application is executing and whether it can meet its required deadlines. One

might speculate that there may exist embedded applications which given enough

hardware horsepower will meet their required deadlines with a software JVM.

For those embedded applications which rely on and use a RTOS, a software JVM could

be executed as a set of tasks or processes on the RTOS. Assuming the JVM tasks have a

sufficient priority, solae non real-time or slow real time embedded application tasks

could be run using a scftware JVM such as:

• Hardware configuration

319

• Maintenance and diagnostics

• Code upgrades and loads

This method of executing Java is typical for desktop and enterprise applications where

performance, although a concern, is not a driving factor. An example of this flavor of

Java is WindRiver® Personal JWorks TM [1].

3.1.1 WindRiver® Personal JWorks TM

As shown in Figure 2, Personal JWorks TM includes the Personal Java Core Libraries, the

JVM, the VxWorks Real Time Operating System (RTOS), the Supporting Native

Libraries, a board support package (BSP) and device drivers for the particular processor
and RTOS.

The Personal Java Core Libraries include the applet, awt, beans, io, lang, math, net, rmi,

security, sql, text and utl packages. The Personal JWorks TM application environment is

based on the Java Development Kit 1.1.8 and adds security as specified in the Java 2

Software Development Kit, version 1.2.

Personal JWorks TM supports and fully implements the Abstract Windowing Toolkit

(AWT) and fully supports the Java AWT graphics system. The WindRiver Media

Library (WindML) glues the Personal JWorks TM environment to an applications graphics

hardware. WindML supports 2D graphics primitives, fonts and provides audio and video

support.

320

PersonalJWorksTM use_', a software JVM that runs as a set of tasks on VxWorks®. Using

the Java Native Interfaze (JNI), JVM services such as thread and memory management

(garbage collection), s)nchronization mechanisms, networking and graphics are mapped

to VxWorks tasks through the Supporting Native Libraries. As a result, the VxWorks

scheduler is able to pric,ritize and preempt the Java threads in the

Supporting Native Libraries WindML 2.0

VxWorks 5.4

BSP/Device Drivers

Figure 2- Personal .IWorks TM Architecture

same way as it does V_Works tasks. Although Personal JWorks TM does not provide real-

time response, any VxWorks native task placed at a higher priority than a Java thread will

execute without impact. Personal JWorks TM thus retains the determinism of VxWorks®.

Using the JNI, Persoraal JWorks TM applications can access any C/C++ function in the

VxWorks operating system including system calls.

3.2 Compiled Java

Compiled Java remov:s the environment portion of Java and treats Java as a language.

Java is simply compiled to either native code or to an intermediate language such as C or

C++. Compiled Java provides the benefit of an object-oriented language without the

performance penalty _f an interpreted language. Garbage collection and other JVM

services are implemented through runtime libraries. Two examples of compiled Java are

the Gnu Compiler for lava TM and WindRiver® Diab TM Fast J®.

3.2.1 Gnu Compiler for JavarM(gcj ")

Java applications are _ ompiled and linked with the gcj runtime library, libg@ The libgcj

supplies the core clas:;es, the garbage collector and the bytecode interpreter. The libgcj

must be ported to the processor in your environment. The gcj allows three types of

compiling:

321

• Javasourcecodeto nativemachinecode
• Javasourcecodeto Javabytecode
• Java bytecode to native machine code

3.2.2 WindRiver® l)iab TM Fast J®

Fast J® compiles C, C++ and Java source code to native machine code. As shown in

Figure 3, the FastJ® compiler compiles, optimizes and generates assembly code for the

desired target CPU and runtime environment using the Global Optimizer, Code Selector

and Code Generator. External assembly source code and external libraries may be

assembled and linked with the C, C++ and Java code. To reduce code size only needed

core libraries may be configured. The Assembler together with the Linker produce an

ELF format executable image for the desired processor.

Fast J® supports three memory management options:

• Explicit memory management, similar to C/C++, eliminates garbage

collection.

Standard, non-incremental garbage collection, runs when memory is low or

explicitly called.

Preemptive, incremental garbage collection, runs as a preemptable, low

priority background task.

Figure 3 - Fast J® Compiler Architecture

322

3.3 Hardware JVM

The ultimate in performance is achieved by executing or running the JVM in hardware.

The JVM is implemented in silicon as either a co-processor or separate processor on a

custom chip. Specially designed or custom hardware is required which directly executes

the Java bytecodes. This is similar to assembly code being executed on a particular

processor. Several chip vendors including ARM from England, Ajile from the United

States, Vulcan Machines LTD from England and NTT Docomo from Japan offer

hardware JVMs. [2]

Several variations of t_le hardware theme are currently available. Some hardware

implementations use a co-processor to execute Java bytecodes. Other implementations

use specialized hardwaw, which is called when Java bytecodes are detected. An example

of a hardware JVM is th,_ ARM® Jazellerrn[3].

3.3.1 ARM@ Jazelle TM

Jazelle TM is a product ti'om ARM®, which includes a hardware JVM for the ARM®

family of processors a_ld a runtime environment to support Java applications. The

Jazelle TM runtime architecture, as shown in Figure 4, allows Java applications to access

the Java Class libraries available in the particular Ja,_a development kit, either the Java 2

Enterprise, Standard or Vlicro Edition. Each edition of Java has a virtual machine which

executes the Java bytecodes. Jazelle TM currently supports the pJava, KVM and CVM

virtual machines. Jazelle TM provides a Java Technology Enabling Kit for porting other
VM's.

The Jazelle TM Supporting Code replaces the Java virtual machine interpreter loop and

enables execution of th,_ Java bytecodes directly in hardware. A condition bit in a new

ARM® instruction put:; the processor in the Java state. The processor then executes the

Java byte code directly _n hardware. Jazelle TM supports execution of both Java bytecodes

and ARM® machine codes. This allows existing application written in C and C++ to

continue to execute alongside the Java applications. The main difference between a
software JVM such as Personal JWorks TM and a hardware JVM such as Jazelle TM is how

the Java bytecodes are executed. In Personal JWorks TM, the bytecodes are translated to

native machine code and then executed. With Jazelle TM, the bytecodes are executed

directly in hardware.

323

Since the JVM must be supported by the underlying RTOS, Jazelle TM also supports

WindowsCE, SymbianOS, PalmOS, Linux and many real time and proprietary operating

systems.

Class

Libraries

Java

VM

Java Application
[Native

Application

JazelleT" Enabled ARM®

Figure 4 - Jazelle TM Run-Time Architecture

3.4 Java as a Real Time Operating System

An interesting variation is viewing the JVM as an operating system. The JVM is the

RTOS. Since the JVM is essentially a machine, simulated or executed on another

machine, it makes sense to eliminate the other machine and execute the JVM directly on

hardware. An example of this is Jbed TM from Esmertec [4].

324

3.4.1 Esmertec TM

Jbed TM combines the JVVl and a real time operating system into a single entity. Jbed TM

has a four layer architect ire. The Java applications have access to lang, io, util as well as

the connection framework in the javax.microedition package and is Personal Java 3.0

(JDK 1.1) compliant. As shown in Figure 5, Jbed TM supports many of the popular

Device

Figure 5 - Jbed TM Run-Time Architecture

Internet protocols such as HTTP, TFTP, TCP/IP, PPP and UDP. JVM services such as

garbage collection (GC) are supported without the intermediary JVM. Jbed TM does not

execute or interpret Java bytecode. Instead, bytecode is translated into fast machine code

prior to downloading or upon class loading with the Way Ahead of Time compiler and

the Target Bytecode Compiler (TBCC). This avoids the speed and size penalty of a

JVM, yet stills provides advanced Java features such as dynamic code loading and

automatic garbage collection. Jbed TM extends the Java thread package to provide priority

based scheduling using the earliest deadline first algorithm. A device driver support

package supports driver development in Java. Thus, the entire application including
device drivers can be written in Java.

4 On the Road to Java

The 9840 and 9940 family of StorageTek tape drives use an ARM7® 32 bit processor,

with 2-4MB of RAM for loading the code image. A 32MB - 64MB data buffer is used for

data transfer and the d_ives support the SCSI, ESCON, and Fibre Channel interfaces.

Specialized Application Specific Integrated Circuits (ASICs) are used to control the tape

drive. All of the code is written in C with Vertex serving as the RTOS.

325

C++ and object design have been introduced into the time critical tape microcode.

Initially, the classes have been written in C++ and are mirrored in Java for unit testing.
The Java classes form the basis for a hardware simulator.

Since FastJ TM is similar to current development environment, FastJ TM will be the first

step to introducing Java in our real time system. It is the least disruptive and does not

require hardware changes. FastJ will be used to compile the Java classes used in the

hardware simulator and tape microcode. Since the current RTOS is old, the next step will
be to investigate Jbed TM which is a Java RTOS, a combination of hardware/software.

Finally, since Jazelle TM requires hardware changes, the last step will be Jazelle TM.

5 Summary

Recently, there has been a resurgence in the use of Java for embedded systems. Options

ranging from software Java Virtual Machines offered by real time operating system

vendors to chip vendors developing Java chips are available to the embedded storage

developer. Java will be used in the next generation Personal Digital Assistants (PDA),

such as the Palm Pilot, and in the next generation of mobile phones.

We believe that Java has now become a viable option for building real-time storage

applications. Issues involving the space, performance and scheduling problems of Java

for embedded systems are being solved. Almost daily, a new vendor or company

announces its plan for Java in the embedded environment. With the many options

available, at least one flavor of embedded Java will work for your application.

6 References

[1] WindRiver web site - http://www.windriver.com

[2] EE Times, January 29,2001, "Java Vendors set to skirmish over cellular", page 1

[3] EE Times, October 16, 2001, "ARM tweaks CPU schemes to run Java", page 20

[4] JavaPro, February, 2002, "A Comfortable Jbed", page 72

326

DIR-2000, 1 Gbit/sec Data Recorder for VERA Project

Tony Sasanuma, Ph.D.

Sony Broadband Solutions Network Company

4-14-1 Asahi-cho, Atsugi-shi,

Kanagawa, 243-0014 Japan

Tony. Sasanuma@jp.sony.com
Tel: +81-46-230-5364

Fax: +81-46-230-6075

Abstract

This paper will discu,_s the new technologies used in the DIR-2000, 1 Gbit/sec data

recorder: the highest performance in the commercial market. It will briefly explain how

the DIR-2000 is implemented in VERA Program [1] of National Astronomical

Observatory in Japan.

1 Introduction

More than 1000 units of Sony DIR-1000 Series [2] data recorders are being used for the

varieties of applicatic,ns among government and scientific communities worldwide.

Responding to the request of a higher data rate than 512 Mbit/sec, Sony developed the

DIR-2000 that offers 1he highest data rate of 1 Gbit/sec. The data capacity on 19mm

metal particle tape is 600 GB and the recording time per cassette tape is 80 minutes at the
data rate of 1 Gbit/sec.

2 New Format

Since 1990, ANSI ID-1 19 mm Format has been well accepted as the high performance

and reliable format by variety of data recorder communities, and there are many ID-1

users worldwide. However, the data capacity per tape of 100 GB for lD-1 is not enough

for a 1 Gbit/sec recorder, since the recording time v_ould be only 13 minutes.

Sony is preparing to propose a new 19 mm format in ANSI Committee for

standardization. The new format of 19 mm is not only suitable for data recording of

high performance and high reliability demanded in 21 st century, but also for read

compatibility of ID-1 tape and similar interface and control on ID-1 drives. The

specifications and parameters of the DIR-2000/new format are shown in terms of the

comparison with the DIR-1000H / ID-1 Format in Table 1.

The dimensions of the: DIR-2000 are the same as those of the DIR-1000 Series, so that

they can be installed in the existing Sony' Mass Storage System such as PetaSite
DMS-8800 and the DMS-24.

327

DIR-IOOOH DIR-2000
Format ANSI ID- 1 Format New Format.

ID-1 Read Compatible
Data Rates

Data Capacity/Tape

Recording Time

512, 400, 256 Mbit/sec

100 GBytes

25 minutes at 512 Mbps

1024, 512, 256 Mbit/sec

600 GBytes

80 minutes at 1024 Mbps

Media Co-oxide New Metal Particle

Tape Width 19 mm 19 mm

Tape Thickness 16 /_ m 11 _ m

Coercive Force (Hc) 900 Oe 2300 Oe

Shortest wavelength 0.89 /_ m 0.45 g m

Track Pitch 45 _ m 19 U m

Maximum Tape Speed 847.5 mrn/sec 356.6 mm/sec

Recording Bit Rate/Head 88 Mbps
Record / Playback Heads 16 heads/16 heads

88 Mbps
32 heads/32 heads

Processor Channels 8 channels 16 channels

Maximum Writing Speed

Scanner Rotation Speed
Data Interface

39.5 meter/sec

110 rps at 512 Mbps
ECL Parallel with

19.7 meter/sec

55 rps at 1024 Mbps
clock

Control Interface RS-422/IEEE-488GPIB/RS-232C

Dimensions (W x H x D) 436 x 432.5 x 633.5 mm

(17 1/4 x 17 1/8 x 25 1/8 inches)
Weight

Power Requirement

Power Consumption

64 Kg (141 lb 1 oz) 70 Kg (154 lb 5 oz)

100 V to 240 V AC + 10% (50/60 Hz)

800 VA 850 VA

Table 1. Specifications and Parameters

3 New Technologies

In order to meet the requirements of high data rate, high data capacity, long head life,

less tape damage, and backward compatibility all together, new heads and new tapes
were developed and implemented in new recorders.

3-1 Ferrite Cover over Heads and ETF Record Heads

There are 32 record heads and 32 playback heads: the total of 64 heads on the scanner of

the DIR-2000! Since the spacing between a record head and playback head is small, the

cross feed signal from record heads to playback heads would be significant during
read-after-write that is an essential function for reliable data recording.

We introduced patented ferrite covers over record and playback heads to shield the

magnetic flux. This simple idea of shielding is very effective and improves the cross
feed by 12 dB.

328

The newly developedtire ETF (EmbeddedThin Film) headhassmall magneticcore
comparewith the conveltional MIG (Metal In Gap) head,so that the magneticleakage
flux from recordheadis improvedfurtherby 7riB.

3-2 Laminated Amorphous Playback Heads and New Metal Tape

The shortest wavelength becomes one half of ID-1 (0.45 _zm vs. 0.89 _t m), and the track

pitch becomes less thaa one half of ID-1 (19_z m vs. 45 _ m). In spite of these

reductions, the combination of the laminated amorphous playback heads and newly

developed metal particle, tape provide even better C/N than ID-1 recorder. This could

be achieved by the joint R & D of heads/drums, drives, and media in Sony.

3-3 Trench Design Heads

There are two trenches _3n record and playback heads of the DIR-2000. This patented

head design provides better head-tape contact with lower head projection, larger head

contour, and lower tape tension. These result in longer head life and less tape damage.

Backward compatibilit3 of format requires playback of tapes of different thickness.

Trench design heads l:rovide a good head-tape contact for different kinds of tape

thickness throughout head life.

The same technologies of trench ETF/amorphous heads and new metal tapes are used in

Sony Computer Tape Drive DTF-2 (24 Mbytes/sec via SCSI or Fiber Channel) that are

installed as a few hundred TB Systems at NASDA and ERSDAC in Japan.

4 Applications

The first application fc,r the DIR-2000 was VERA Project of National Astronomical

Observatory in Japan. VERA stands for VLBI (Very Long Baseline lnterferometer)

Exploration of Ratio Astronomy. VERA array consists of four telescopes whose

diameter is 20 meters _67 feet). The combination of these telescopes can obtain the

resolution power of ate escope whose diameter is 2000km (1250 miles).

The DIR-2000 1 GbitL, ec recorder is one of the key devices for VERA Project. One

DIR-2000 drive is used to record the data at each oftbur VERA telescope stations. The

correlator at National Astronomical Observatory in Tokyo supports four tape drives of

the DIR-2000 to analyz,," the data from four telescope stations.

The DIR-2000's are i_lstalled in the DMS-24, Mass Storage System for automated

operations for data acqJisition at the telescope stations and correlation in Tokyo. The

DMS-24 library can handle up to 24 large cassette tapes (14.4 TB capacity) and two

drives of the DIR-2000 s.

Besides VERA Projecl, a government agency in Japan plans to develop 2.5 Gbit/sec

ATM network, and is considering using the DIR-2000 to record the data on the

broadband network. Broadband network is one of the important technologies in 21 st

century, and recording of high-speed un-interrupted data will be needed.

329

5 Conclusions

Sony has developed the DIR-2000:1 Gbit/sec data recorder with 600 GB data capacity

per tape. The DIR-2000 meets the requirement for recording of un-interrupting data at

very high data rate. The applications for this recorder are not only scientific researches
but also broadband radar and network.

The DIR-2000 will be demonstrated at Vendor Exhibit Area.

References

[1] M. Homma, et al. "Science with VERA: VLBI Exploration of Radio Astrometry"
SPIE Proceeding No. 4015, 2000

[2] T. Sasanuma. "New 512 Mbit/sec ID-1 Recorder" THIC Conference October 15 th,
1996

330

Index of Authors

Adam, Nabil R - Efficient Storage and Management of Environmental Information 165

Atluri, Vijayalakshmi - Effizient Storage and Management of Environmental Information 165

Azagury, Alain - Point-in-_fime Copy: Yesterday, Today and Tomorrow 259

Banachowski, Scott A - Intra-file Security for a Distributed File System 153

Bhide, Anupam - File Virtualization with DirectNFS ... 43

Borzuchowski, Janet - Java and Real Time Storage Applications ... 317

Brandt, Scott A - Intra-file gecurity for a Distributed File System ... 153

Burns, Randal - Experimentally Evaluating in-place Delta Reconstruction 137

Butler, Michelle L. - Storable Issues at NCSA: How to get file systems going wide and fast

within and out of large _cale Linux cluster systems ... 93

Calvo, Sherri - Conceptual Study of Intelligent Data Archives of the Future 75

Chang, Tai-Sheng - EfficieJlt RAID Disk Scheduling on Smart Disks ... 121

Debiez, Jacques - High Pelformance RAIT .. 65

Dee, Richard H - The Challenges of Magnetic Recording on Tape for Data Storage

(The One Terabyte Cartridge and Beyond) ... 109

Du, David H C - Efficient RAID Disk Scheduling on Smart Disks .. 121

Engineer, Anu - File Virtu_ lization with DirectNFS ... 43

Factor, Michael E - Point-in-Time Copy: Yesterday, Today and Tomorrow 259

Fitzgerald, Keith - Storage Area Networks and the High Performance Storage System 225

Graf, Otis - Storage Area Networks and the High Performance Storage System 225

Gu, Junmin - Storage Res¢,urce Managers: Middleware Components for Grid Storage 209

Hanai, Kazuko -The storage stability of metal particle media : Chemical analysis and kinetics

of lubricant and binder hydrolysis ... 31 l

Harberts, Robert - Conceptual Study of Intelligent Data Archives of the Future 75

Hersch, Roger D - Indexing and selection of data items in huge data sets by constructing and

accessing tag collections .. 181

Hughes, James - High Peri'ormance RAIT .. 65

Hulen, Harry - Storage Ar,_a Networks and the High Performance Storage System 225

Kakuishi, Yutaka - The stcrage stability of metal particle media : Chemical analysis and kinetics of

lubricant and binder hlIdrolysis ... 311

Kanetkar, Anshuman - Fil,_ Virtualization with DirectNFS ... 43

Karamanolis, Christos - Fle Virtualization with DirectNFS ... 43

Karamanolis, Christos - Locating Logical Volumes in Large-Scale Networks 271

Karlsson, Magnus - Locating Logical Volumes in Large-Scale Networks 271

Kempler, Steve - Concept Jal Study of Intelligent Data Archives of the Future 75

Khizroev, Sakhrat - Perpendicular Recording: A Future Technology or a Temporary Solution 1

331

Khoo, Patrick Beng T - Introducing A Flexible Data Transport Protocol for Network Storage

Applications ... 241

Kiang, Richard - Conceptual Study of Intelligent Data Archives of the Future 75

Kini, Aditya - File Virtualization with DirectNFS ... 43

Li, Jiangtao - Data Placement for Tertiary Storage ... 193

Litvinov, Dmitri -Perpendicular Recording: A Future Technology or a Temporary Solution 1

Long, Darrel D E - Experimentally Evaluating in-place Delta Reconstruction 137

Lynnes, Chris - Conceptual Study of Intelligent Data Archives of the Future 75

Mahalingam, Mallik - Locating Logical Volumes in Large-Scale Networks 271

Markov, Vladimir B. - High-density holographic data storage with random encoded

reference beam ... 291

McConaughy, Gail - Conceptual Study of Intelligent Data Archives of the Future 75

McDonald, Ken - Conceptual Study of Intelligent Data Archives of the Future 75

Meth, Kalman Z - iSCSI Initiator Design and Implementation Experience 297

Micka, William - Point-in-Time Copy: Yesterday, Today and Tomorrow 259

Miller, Ethan L - Intra-file Security for a Distributed File System ... 153

Milligan, Charles - High Performance RAIT .. 65

Mueller, Gary - Java and Real Time Storage Applications .. 317

Muntz, Dan - Building a Single Distributed File System from Many NFS Server -or-

The Poor-Man's Cluster Server ... 60

Muntz, Dan - File Virtualization with DirectNFS ... 43

Peterson, Zachary N J - Intra-file Security for a Distributed File System 53

Prabhakar, Sunil -Data Placement for Tertiary Storage .. 193

Ponce, Sebastien - Indexing and selection of data items in huge data sets by constructing and

accessing tag collections .. 181

Ramapriyan, H. K - Conceptual Study of Intelligent Data Archives of the Future 75

Roelofs, Larry - Conceptual Study of Intelligent Data Archives of the Future 75

Ruwart, Thomas M - OSD: A Tutorial on Object Storage Devices ... 21

Sarkar, Prasenjit - IP Storage: The Challenge Ahead .. 35

Sasanuma, Tony - DIR-2000, 1 Gbit/sec Data Recorder for VERA Project 327

Satran, Julian - Point-in-Time Copy: Yesterday, Today and Tomorrow .. 259

Shi, Jing - Efficiently Scheduling Tape-resident Jobs ... 305

Shoshani, Arie - Storage Resource Managers: Middleware Components for Grid Storage 209

Sim, Alex - Storage Resource Managers: Middleware Components for Grid Storage 209

Stockmeyer, Larry - Experimentally Evaluating in-place Delta Reconstruction 137

Sun, Donglian - Conceptual Study of Intelligent Data Archives of the Future 75

Thunquest, Gary - File Virtualization with DirectNFS .. 43

Vila, Pere Mato - Indexing and selection of data items in huge data sets by constructing and

accessing tag collections .. 181

Voruganti, Kaladhar - IP Storage: The Challenge Ahead .. 35

332

Wang,WilsonYongH. -]ntroducingA FlexibleDataTransportProtocolfor Network
StorageApplications..241

Watson,RichardW - StorageAreaNetworksandtheHigh PerformanceStorageSystem..........225

Xing, Chunxiao- Efficierttly SchedulingTape-residentJobs..305
Xu, Zhichen- LocatingLogicalVolumesin Large-ScaleNetworks...271

Yesha,Yelena- Efficient :_torageandManagementof EnvironmentalInformation.....................165
Yu, Songmei- Efficient StorageandManagementof EnvironmentalInformation......................165

Zhang,Zheng- FileVirtualizationwith DirectNFS..43
Zhou,Lizhu - Efficiently SchedulingTape-residentJobs...305

333

REPORT DOCUMENTATION PAGE Form Approved
OMB No, 0704-0188

Public reportingburden for this collection of information is estimated to average 1 hour per response, includingthe time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, includingsuggestions for reducing this burden, to Washington Headquarters Services, Directoratefor Information Operalions and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 2002 Conference Publication
'4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Tenth Goddard Conference on Mass Storage Systems and Technologies

in cooperation with the Nineteenth IEEE Symposium on Mass Storage 423

Systems
6. AUTHOR(S)

Benjamin Kobler and P C Hariharan, Editors

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

Goddard Space Flight Center

Greenbelt, Maryland 20771

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS (ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PEFORMING ORGANIZATION

REPORT NUMBER

000133

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

CP--2002-210000

11. SUPPLEMENTARY NOTES

P C Hariharan, Systems Engineering and Security, Inc., Greenbelt, Maryland

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category: 82

Report available from the NASA Center for AeroSpace Information,

7121 Standard Drive, Hanover, MD 21076-1320. (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

This document contains copies of those technical papers received in time for publication prior to the

Tenth Goddard Conference on Mass Storage Systems and Technologies which is being held in coop-

eration with the Nineteenth IEEE Symposium on Mass Storage Systems at the University of Maryland

University College Inn and Conference Center April 15-18, 2002. As one of an ongoing series, this

Conference continues to provide a forum for discussion of issues relevant to the ingest, storage, and

management of large volumes of data. The Conference encourages all interested organizations to

discuss long-term mass storage requirements and experiences in fielding solutions. Emphasis is on

current and future practical solutions addressing issues in data management, storage systems and

media, data acquisition, long-term retention of data, and data distribution. This year's discussion topics

include architecture, future of current technology, storage networking with emphasis on IP storage,

performance, standards, site reports, and vendor solutions. Tutorials will be available on perpendicular

magnetic recording, object based storage, storage virtualization and IP storage.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Magnetic tape, magnetic disk, optical data storage, mass storage, archive storage, file storage 333
management system, hierarchical storage management software, data backup, network
attached storage, archive performance, media life expectancy, archive scalabdity, tertiary 16.PRICECODE
storage rdata warehousingr SAN r IP storage r iSCSI r storage virtualization.

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39.18

20. LIMITATION OF ABSTRAC]

